To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hermann Schwarz

From Wikipedia, the free encyclopedia

Karl Hermann Amandus Schwarz (German: [ˈhɛʁman ˈʃvaʁts]; 25 January 1843 – 30 November 1921) was a German mathematician, known for his work in complex analysis.

YouTube Encyclopedic

  • 1/3
    Views:
    6 083
    436
    11 086
  • ✪ Cauchy Schwarz Inequality Proof
  • ✪ Cauchy-schwarz-3
  • ✪ Cauchy Schwarz Inequality Proof new

Transcription

Contents

Life

Schwarz was born in Hermsdorf, Silesia (now Jerzmanowa, Poland). On 30 June 1912 he married Marie Kummer, who was the daughter to the mathematician Ernst Eduard Kummer[1] and Ottilie née Mendelssohn (a daughter of Nathan Mendelssohn's and granddaughter of Moses Mendelssohn). Schwarz and Kummer had six children, including his daughter Emily Schwarz.[1]

Schwarz originally studied chemistry in Berlin but Ernst Eduard Kummer and Karl Theodor Wihelm Weierstrass persuaded him to change to mathematics.[2] He received his Ph.D. from the Universität Berlin in 1864 and was advised by Ernst Kummer and Karl Weierstraß.[3] Between 1867 and 1869 he worked at the University of Halle, then at the Swiss Federal Polytechnic.[4] From 1875 he worked at Göttingen University,[4] dealing with the subjects of complex analysis, differential geometry and the calculus of variations. He died in Berlin.

Work

Schwarz's works include Bestimmung einer speziellen Minimalfläche, which was crowned by the Berlin Academy in 1867 and printed in 1871, and Gesammelte mathematische Abhandlungen (1890).

Among other things, Schwarz improved the proof of the Riemann mapping theorem,[5] developed a special case of the Cauchy–Schwarz inequality, and gave a proof that the ball has less surface area than any other body of equal volume.[6] His work on the latter allowed Émile Picard to show solutions of differential equations exist (the Picard–Lindelöf theorem).[2]

In 1892 he became a member of the Berlin Academy of Science and a professor at the University of Berlin, where his students included Lipót Fejér, Paul Koebe and Ernst Zermelo. In total, he advised 20 Ph.D students.[3]

His name is attached to many ideas in mathematics,[1] including:

Publications

  • Schwarz, H. A. (1871), Bestimmung einer speziellen Minimalfläche, Dümmler
  • Schwarz, H. A. (1972) [1890], Gesammelte mathematische Abhandlungen. Band I, II, Bronx, N.Y.: AMS Chelsea Publishing, ISBN 978-0-8284-0260-6, MR 0392470

Notes

  1. ^ a b c Agarwal, Ravi; Sen, Syamal (2014-11-11). Creators of Mathematical and Computational Sciences. Springer. pp. 297–298. ISBN 9783319108704.
  2. ^ a b O'Connor, J. J.; Robertson, E. F. "Schwarz biography". www-gap.dcs.st-and.ac.uk. The MacTutor History of Mathematics. Retrieved 2016-05-22.
  3. ^ a b "The Mathematics Genealogy Project - Hermann Schwarz". www.genealogy.math.ndsu.nodak.edu. Retrieved 2016-05-22.
  4. ^ a b Chang, Sooyoung (2011-01-01). Academic Genealogy of Mathematicians. World Scientific. pp. 77–78. ISBN 9789814282291.
  5. ^ Bottazzini, Umberto (2003-04-30). "Algebraic truths vs geometric fantasies: Weierstrass' Response to Riemann". arXiv:math/0305022.
  6. ^ Schwarz, Hermann Amandus (1884). "Proof of the theorem that the ball has less surface area than any other body of the same volume". News of the Royal Society of Sciences and the Georg-August-Universität Göttingen. 1884: 1–13.

External links

This page was last edited on 23 October 2019, at 14:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.