To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Half-normal distribution

From Wikipedia, the free encyclopedia

Half-normal distribution
Probability density function
Probability density function of the half-normal distribution '"`UNIQ--postMath-00000001-QINU`"'

Cumulative distribution function
Cumulative distribution function of the half-normal distribution '"`UNIQ--postMath-00000003-QINU`"'

Parameters — (scale)
Support
PDF
CDF
Quantile
Mean
Median
Mode
Variance
Skewness
Ex. kurtosis
Entropy

In probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution.

Let follow an ordinary normal distribution, , then follows a half-normal distribution. Thus, the half-normal distribution is a fold at the mean of an ordinary normal distribution with mean zero.

Properties

Using the parametrization of the normal distribution, the probability density function (PDF) of the half-normal is given by

where .

Alternatively using a scaled precision (inverse of the variance) parametrization (to avoid issues if is near zero), obtained by setting , the probability density function is given by

where .

The cumulative distribution function (CDF) is given by

Using the change-of-variables , the CDF can be written as

where erf is the error function, a standard function in many mathematical software packages.

The quantile function (or inverse CDF) is written:

where and is the inverse error function

The expectation is then given by

The variance is given by

Since this is proportional to the variance σ2 of X, σ can be seen as a scale parameter of the new distribution.

The entropy of the half-normal distribution is exactly one bit less the entropy of a zero-mean normal distribution with the same second moment about 0. This can be understood intuitively since the magnitude operator reduces information by one bit (if the probability distribution at its input is even). Alternatively, since a half-normal distribution is always positive, the one bit it would take to record whether a standard normal random variable were positive (say, a 1) or negative (say, a 0) is no longer necessary. Thus,

Parameter estimation

Given numbers drawn from a half-normal distribution, the unknown parameter of that distribution can be estimated by the method of maximum likelihood, giving

The bias is equal to

which yields the bias-corrected maximum likelihood estimator

Related distributions

See also

References

External links

(note that MathWorld uses the parameter )

Further reading

  • Leone, F. C.; Nelson, L. S.; Nottingham, R. B. (1961), "The folded normal distribution", Technometrics, 3 (4): 543–550, doi:10.2307/1266560, JSTOR 1266560
This page was last edited on 19 October 2019, at 03:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.