To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hadamard space

From Wikipedia, the free encyclopedia

In an Hadamard space, a triangle is hyperbolic; that is, the middle one in the picture. In fact, any complete metric space where a triangle is hyperbolic is an Hadamard space.

In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces.

A Hadamard space is defined to be a nonempty[1] complete metric space such that, given any points and there exists a point such that for every point

The point is then the midpoint of and

In a Hilbert space, the above inequality is equality (with ), and in general an Hadamard space is said to be flat if the above inequality is equality. A flat Hadamard space is isomorphic to a closed convex subset of a Hilbert space. In particular, a normed space is an Hadamard space if and only if it is a Hilbert space.

The geometry of Hadamard spaces resembles that of Hilbert spaces, making it a natural setting for the study of rigidity theorems. In a Hadamard space, any two points can be joined by a unique geodesic between them; in particular, it is contractible. Quite generally, if is a bounded subset of a metric space, then the center of the closed ball of the minimum radius containing it is called the circumcenter of [2] Every bounded subset of a Hadamard space is contained in the smallest closed ball (which is the same as the closure of its convex hull). If is the group of isometries of a Hadamard space leaving invariant then fixes the circumcenter of (Bruhat–Tits fixed point theorem).

The basic result for a non-positively curved manifold is the Cartan–Hadamard theorem. The analog holds for a Hadamard space: a complete, connected metric space which is locally isometric to a Hadamard space has an Hadamard space as its universal cover. Its variant applies for non-positively curved orbifolds. (cf. Lurie.)

Examples of Hadamard spaces are Hilbert spaces, the Poincaré disc, complete real trees (for example, complete Bruhat–Tits building), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math alttext="{\displaystyle (p,q)}" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p,q)}</annotation> </semantics> </math></span><img alt="(p, q)" aria-hidden="true" class="mwe-math-fallback-image-inline mw-invert" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9769c58523b9b639866a2d48e657d9c26911143a" style="vertical-align: -0.838ex; width:5.082ex; height:2.843ex;"/></span>-space with and and Hadamard manifolds, that is, complete simply-connected Riemannian manifolds of nonpositive sectional curvature. Important examples of Hadamard manifolds are simply connected nonpositively curved symmetric spaces.

Applications of Hadamard spaces are not restricted to geometry. In 1998, Dmitri Burago and Serge Ferleger[3] used CAT(0) geometry to solve a problem in dynamical billiards: in a gas of hard balls, is there a uniform bound on the number of collisions? The solution begins by constructing a configuration space for the dynamical system, obtained by joining together copies of corresponding billiard table, which turns out to be an Hadamard space.

YouTube Encyclopedic

  • 1/3
    Views:
    344
    25 805
    8 973
  • Mini-Course: Regularization methods in Banach spaces - Class 01
  • The Hadamard gate
  • The postulates of quantum mechanics I: states and state space

Transcription

See also

  • CAT(k) space – Type of metric space in mathematics
  • Hadamard manifold – complete, simply-connected Riemannian manifold with nonpositive sectional curvature everywhere

References

  1. ^ The assumption on "nonempty" has meaning: a fixed point theorem often states the set of fixed point is an Hadamard space. The main content of such an assertion is that the set is nonempty.
  2. ^ A Course in Metric Geometry, p. 334.
  3. ^ Burago D., Ferleger S. Uniform estimates on the number of collisions in semi-dispersing billiards. Ann. of Math. 147 (1998), 695-708
  • Bridson, Martin R.; Haefliger, André (1999), Metric spaces of non-positive curvature, Springer
  • Papadopoulos, Athanase (2014), Metric spaces, convexity and non-positive curvature, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6 (Second ed.), European Mathematical Society, ISBN 978-3-03719-132-3
  • Burago, Dmitri; Yuri Burago, and Sergei Ivanov. A Course in Metric Geometry. American Mathematical Society. (1984)
  • Jacob Lurie: Notes on the Theory of Hadamard Spaces
  • Alexander S., Kapovich V., Petrunin A. Notes on Alexandrov Geometry
This page was last edited on 23 April 2023, at 07:19
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.