To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Hénon attractor for a = 1.4 and b = 0.3
Hénon attractor for a = 1.4 and b = 0.3
Hénon attractor for a = 1.4 and b = 0.3
Hénon attractor for a = 1.4 and b = 0.3

The Hénon map is a discrete-time dynamical system. It is one of the most studied examples of dynamical systems that exhibit chaotic behavior. The Hénon map takes a point (xnyn) in the plane and maps it to a new point

The map depends on two parameters, a and b, which for the classical Hénon map have values of a = 1.4 and b = 0.3. For the classical values the Hénon map is chaotic. For other values of a and b the map may be chaotic, intermittent, or converge to a periodic orbit. An overview of the type of behavior of the map at different parameter values may be obtained from its orbit diagram.

The map was introduced by Michel Hénon as a simplified model of the Poincaré section of the Lorenz model. For the classical map, an initial point of the plane will either approach a set of points known as the Hénon strange attractor, or diverge to infinity. The Hénon attractor is a fractal, smooth in one direction and a Cantor set in another. Numerical estimates yield a correlation dimension of 1.25 ± 0.02[1] and a Hausdorff dimension of 1.261 ± 0.003[2] for the attractor of the classical map.

YouTube Encyclopedic

  • 1/5
    Views:
    1 084
    398
    320
    2 855
    375
  • ✪ Henon Map Bifurcation
  • ✪ Hénon-Heiles
  • ✪ Henon Map Visualization
  • ✪ Henon Heiles Potential
  • ✪ Playing with the Henon Map Starting with a Circle or a Square

Transcription

Contents

Attractor

Orbit diagram for the Hénon map with b=0.3. Higher density (darker) indicates increased probability of the variable x acquiring that value for the given value of a.  Notice the satellite regions of chaos and periodicity around a=1.075 -- these can arise depending upon initial conditions for x and y.
Orbit diagram for the Hénon map with b=0.3. Higher density (darker) indicates increased probability of the variable x acquiring that value for the given value of a. Notice the satellite regions of chaos and periodicity around a=1.075 -- these can arise depending upon initial conditions for x and y.

The Hénon map maps two points into themselves: these are the invariant points. For the classical values of a and b of the Hénon map, one of these points is on the attractor:

This point is unstable. Points close to this fixed point and along the slope 1.924 will approach the fixed point and points along the slope -0.156 will move away from the fixed point. These slopes arise from the linearizations of the stable manifold and unstable manifold of the fixed point. The unstable manifold of the fixed point in the attractor is contained in the strange attractor of the Hénon map.

The Hénon map does not have a strange attractor for all values of the parameters a and b. For example, by keeping b fixed at 0.3 the bifurcation diagram shows that for a = 1.25 the Hénon map has a stable periodic orbit as an attractor.

Cvitanović et al. have shown how the structure of the Hénon strange attractor can be understood in terms of unstable periodic orbits within the attractor.

Classical Hénon map (15 iterations). Sub-iterations calculated using three steps decomposition.
Classical Hénon map (15 iterations). Sub-iterations calculated using three steps decomposition.

Decomposition

The Hénon map may be decomposed into an area-preserving bend:

,

a contraction in the x direction:

,

and a reflection in the line y = x:

.


One Dimensional Decomposition

The Hénon map may also be deconstructed into a one dimensional map, defined similarly to the Fibonacci Sequence.

Special Cases and Low Period Orbits

If one solves the One Dimensional Hénon Map for the special case:

One arrives at the simple quadradic:

Or

The quadratic formula yields:

In the special case b=1, this is simplified to

If, in addition, a is in the form the formula is further simplified to

In practice the starting point (X,X) will follow a 4-point loop in two dimensions passing through all quadrants.

See also

Notes

  1. ^ P. Grassberger; I. Procaccia (1983). "Measuring the strangeness of strange attractors". Physica. 9D (1–2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1.
  2. ^ D.A. Russell; J.D. Hanson; E. Ott (1980). "Dimension of strange attractors". Physical Review Letters. 45 (14): 1175. Bibcode:1980PhRvL..45.1175R. doi:10.1103/PhysRevLett.45.1175.

References

External links

This page was last edited on 9 April 2019, at 23:30
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.