To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Graph of a function

From Wikipedia, the free encyclopedia

Graph of the function  f ( x ) = x 3 + 3 x 2 − 6 x − 8 4 . {\displaystyle f(x)={\frac {x^{3}+3x^{2}-6x-8}{4}}.}
Graph of the function

In mathematics, the graph of a function is the set of ordered pairs , where In the common case where and are real numbers, these pairs are Cartesian coordinates of points in two-dimensional space and thus form a subset of this plane.

In the case of functions of two variables, that is functions whose domain consists of pairs the graph usually refers to the set of ordered triples where instead of the pairs as in the definition above. This set is a subset of three-dimensional space; for a continuous real-valued function of two real variables, it is a surface.

In science, engineering, technology, finance, and other areas, graphs are tools used for many purposes. In the simplest case one variable is plotted as a function of another, typically using rectangular axes; see Plot (graphics) for details.

A graph of a function is a special case of a relation. In the modern foundations of mathematics, and, typically, in set theory, a function is actually equal to its graph.[1] However, it is often useful to see functions as mappings,[2] which consist not only of the relation between input and output, but also which set is the domain, and which set is the codomain. For example, to say that a function is onto (surjective) or not the codomain should be taken into account. The graph of a function on its own doesn't determine the codomain. It is common[3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective.

Graph of the function  f ( x ) = x 4 − 4 x {\displaystyle f(x)=x^{4}-4^{x}}  over the interval [−2,+3]. Also shown are the two real roots and the local minimum that are in the interval.
Graph of the function over the interval [−2,+3]. Also shown are the two real roots and the local minimum that are in the interval.

YouTube Encyclopedic

  • 1/5
    1 944 011
    261 602
    715 209
    1 122 925
    407 708
  • Algebra Basics: Graphing On The Coordinate Plane - Math Antics
  • Introduction to 3d graphs | Multivariable calculus | Khan Academy
  • Graphing a Basic Function
  • Graphs of linear equations | Linear equations and functions | 8th grade | Khan Academy
  • Graphs of absolute value functions | Functions and their graphs | Algebra II | Khan Academy



Given a mapping in other words a function together with its domain and codomain the graph of the mapping is[4] the set

which is a subset of . In the abstract definition of a function, is actually equal to

One can observe that, if, then the graph is a subset of (strictly speaking it is but one can embed it with the natural isomorphism).


Functions of one variable

Graph of the function  f ( x , y ) = sin ⁡ ( x 2 ) ⋅ cos ⁡ ( y 2 ) . {\displaystyle f(x,y)=\sin \left(x^{2}\right)\cdot \cos \left(y^{2}\right).}
Graph of the function

The graph of the function defined by

is the subset of the set

From the graph, the domain is recovered as the set of first component of each pair in the graph . Similarly, the range can be recovered as . The codomain , however, cannot be determined from the graph alone.

The graph of the cubic polynomial on the real line


If this set is plotted on a Cartesian plane, the result is a curve (see figure).

Functions of two variables

Plot of the graph of  f ( x , y ) = − ( cos ⁡ ( x 2 ) + cos ⁡ ( y 2 ) ) 2 , {\displaystyle f(x,y)=-\left(\cos \left(x^{2}\right)+\cos \left(y^{2}\right)\right)^{2},}  also showing its gradient projected on the bottom plane.
Plot of the graph of also showing its gradient projected on the bottom plane.

The graph of the trigonometric function


If this set is plotted on a three dimensional Cartesian coordinate system, the result is a surface (see figure).

Oftentimes it is helpful to show with the graph, the gradient of the function and several level curves. The level curves can be mapped on the function surface or can be projected on the bottom plane. The second figure shows such a drawing of the graph of the function:

See also


  1. ^ Charles C Pinter (2014) [1971]. A Book of Set Theory. Dover Publications. p. 49. ISBN 978-0-486-79549-2.
  2. ^ T. M. Apostol (1981). Mathematical Analysis. Addison-Wesley. p. 35.
  3. ^ P. R. Halmos (1982). A Hilbert Space Problem Book. Springer-Verlag. p. 31. ISBN 0-387-90685-1.
  4. ^ D. S. Bridges (1991). Foundations of Real and Abstract Analysis. Springer. p. 285. ISBN 0-387-98239-6.

External links

This page was last edited on 20 January 2023, at 14:33
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.