To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Graph (topology)

From Wikipedia, the free encyclopedia

In topology, a branch of mathematics, a graph is a topological space which arises from a usual graph by replacing vertices by points and each edge by a copy of the unit interval , where is identified with the point associated to and with the point associated to . That is, as topological spaces, graphs are exactly the simplicial 1-complexes and also exactly the one-dimensional CW complexes.[1]

Thus, in particular, it bears the quotient topology of the set

under the quotient map used for gluing. Here is the 0-skeleton (consisting of one point for each vertex ), are the closed intervals glued to it, one for each edge , and is the disjoint union.[1]

The topology on this space is called the graph topology.

YouTube Encyclopedic

  • 1/3
    Views:
    61 520
    4 682
    4 181
  • Topological Sorting | GeeksforGeeks
  • Introduction to Topological Sorting in Directed Acyclic Graphs
  • Depth First Search Based Topological Sorting

Transcription

Subgraphs and trees

A subgraph of a graph is a subspace which is also a graph and whose nodes are all contained in the 0-skeleton of . is a subgraph if and only if it consists of vertices and edges from and is closed.[1]

A subgraph is called a tree if it is contractible as a topological space.[1] This can be shown equivalent to the usual definition of a tree in graph theory, namely a connected graph without cycles.

Properties

  • The associated topological space of a graph is connected (with respect to the graph topology) if and only if the original graph is connected.
  • Every connected graph contains at least one maximal tree , that is, a tree that is maximal with respect to the order induced by set inclusion on the subgraphs of which are trees.[1]
  • If is a graph and a maximal tree, then the fundamental group equals the free group generated by elements , where the correspond bijectively to the edges of ; in fact, is homotopy equivalent to a wedge sum of circles.[1]
  • Forming the topological space associated to a graph as above amounts to a functor from the category of graphs to the category of topological spaces.
  • Every covering space projecting to a graph is also a graph.[1]

See also

References

  1. ^ a b c d e f g Hatcher, Allen (2002). Algebraic Topology. Cambridge University Press. p. 83ff. ISBN 0-521-79540-0.
This page was last edited on 21 February 2024, at 06:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.