To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Granville number

From Wikipedia, the free encyclopedia

In mathematics, specifically number theory, Granville numbers, also known as -perfect numbers, are an extension of the perfect numbers.

YouTube Encyclopedic

  • 1/5
    Views:
    25 284
    1 883
    1 953 715
    1 420
    1 193
  • Math Mornings at Yale: The Patterns in the Primes, with Andrew Granville
  • Andrew Granville Interview Clip
  • The High Schooler Who Solved a Prime Number Theorem
  • Andrew Granville Distinguished Lecture
  • Andrew Granville Distinguished Lecture

Transcription

The Granville set

In 1996, Andrew Granville proposed the following construction of a set :[1]

Let , and for any integer larger than 1, let if

A Granville number is an element of for which equality holds, that is, is a Granville number if it is equal to the sum of its proper divisors that are also in . Granville numbers are also called -perfect numbers.[2]

General properties

The elements of can be k-deficient, k-perfect, or k-abundant. In particular, 2-perfect numbers are a proper subset of .[1]

S-deficient numbers

Numbers that fulfill the strict form of the inequality in the above definition are known as -deficient numbers. That is, the -deficient numbers are the natural numbers for which the sum of their divisors in is strictly less than themselves:

S-perfect numbers

Numbers that fulfill equality in the above definition are known as -perfect numbers.[1] That is, the -perfect numbers are the natural numbers that are equal the sum of their divisors in . The first few -perfect numbers are:

6, 24, 28, 96, 126, 224, 384, 496, 1536, 1792, 6144, 8128, 14336, ... (sequence A118372 in the OEIS)

Every perfect number is also -perfect.[1] However, there are numbers such as 24 which are -perfect but not perfect. The only known -perfect number with three distinct prime factors is 126 = 2 · 32 · 7.[2]

S-abundant numbers

Numbers that violate the inequality in the above definition are known as -abundant numbers. That is, the -abundant numbers are the natural numbers for which the sum of their divisors in is strictly greater than themselves:

They belong to the complement of . The first few -abundant numbers are:

12, 18, 20, 30, 42, 48, 56, 66, 70, 72, 78, 80, 84, 88, 90, 102, 104, ... (sequence A181487 in the OEIS)

Examples

Every deficient number and every perfect number is in because the restriction of the divisors sum to members of either decreases the divisors sum or leaves it unchanged. The first natural number that is not in is the smallest abundant number, which is 12. The next two abundant numbers, 18 and 20, are also not in . However, the fourth abundant number, 24, is in because the sum of its proper divisors in is:

1 + 2 + 3 + 4 + 6 + 8 = 24

In other words, 24 is abundant but not -abundant because 12 is not in . In fact, 24 is -perfect - it is the smallest number that is -perfect but not perfect.

The smallest odd abundant number that is in is 2835, and the smallest pair of consecutive numbers that are not in are 5984 and 5985.[1]

References

  1. ^ a b c d e De Koninck JM, Ivić A (1996). "On a Sum of Divisors Problem" (PDF). Publications de l'Institut mathématique. 64 (78): 9–20. Retrieved 27 March 2011.
  2. ^ a b de Koninck, Jean-Marie (2008). Those Fascinating Numbers. Translated by de Koninck, J. M. Providence, RI: American Mathematical Society. p. 40. ISBN 978-0-8218-4807-4. MR 2532459. OCLC 317778112.
This page was last edited on 23 September 2023, at 21:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.