To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Goldschmidt tolerance factor

From Wikipedia, the free encyclopedia

Goldschmidt's tolerance factor (from the German word Toleranzfaktor) is an indicator for the stability and distortion of crystal structures.[1] It was originally only used to describe the perovskite ABO3 structure, but now tolerance factors are also used for ilmenite.[2]

Alternatively the tolerance factor can be used to calculate the compatibility of an ion with a crystal structure.[3]

The first description of the tolerance factor for perovskite was made by Victor Moritz Goldschmidt in 1926.[4]

YouTube Encyclopedic

  • 1/3
    Views:
    35 509
    5 164
    3 362
  • Perovskite Crystal Structure
  • PEROVSKITES - ABO3/ABX3 type solid( quick easy, in hindi)
  • Mod-01 Lec-26 Spintronic Materials I Colossal Magentoresistive Oxides

Transcription

Mathematical expression

The Goldschmidt tolerance factor () is a dimensionless number that is calculated from the ratio of the ionic radii:[1]

rA is the radius of the A cation. rB is the radius of the B cation. rO is the radius of the anion (usually oxygen).

In an ideal cubic perovskite structure, the lattice parameter (i.e., length) of the unit cell (a) can be calculated using the following equation:[1]

rA is the radius of the A cation. rB is the radius of the B cation. rO is the radius of the anion (usually oxygen).

Perovskite structure

The perovskite structure has the following tolerance factors (t):

Goldschmidt tolerance factor (t) Structure Explanation Example Example lattice
>1[3] Hexagonal or Tetragonal A ion too big or B ion too small. -
0.9-1[3] Cubic A and B ions have ideal size.
0.71 - 0.9[3] Orthorhombic/Rhombohedral A ions too small to fit into B ion interstices.
<0.71[3] Different structures A ions and B have similar ionic radii. -

See also

References

  1. ^ a b c d e f g Parkin, editors-in-chief, Helmut Kronmller, Stuart; Mats Johnsson; Peter Lemmens (2007). Handbook of magnetism and advanced magnetic materials ([Online-Ausg.] ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-470-02217-7. Retrieved 17 May 2012.
  2. ^ Liu, XiangChun; Hong, Rongzi; Tian, Changsheng (24 April 2008). "Tolerance factor and the stability discussion of ABO3-type ilmenite". Journal of Materials Science: Materials in Electronics. 20 (4): 323–327. doi:10.1007/s10854-008-9728-8. S2CID 96085518.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b c d e f Schinzer, Carsten. "Distortion of Perovskites". Retrieved 17 May 2012.
  4. ^ Goldschmidt, Victor M. (1926). "Die Gesetze der Krystallochemie". Die Naturwissenschaften. 14 (21): 477–485. Bibcode:1926NW.....14..477G. doi:10.1007/bf01507527. S2CID 33792511.
This page was last edited on 18 October 2022, at 10:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.