To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Unibranch local ring

From Wikipedia, the free encyclopedia

In algebraic geometry, a local ring A is said to be unibranch if the reduced ring Ared (obtained by quotienting A by its nilradical) is an integral domain, and the integral closure B of Ared is also a local ring.[citation needed] A unibranch local ring is said to be geometrically unibranch if the residue field of B is a purely inseparable extension of the residue field of Ared. A complex variety X is called topologically unibranch at a point x if for all complements Y of closed algebraic subsets of X there is a fundamental system of neighborhoods (in the classical topology) of x whose intersection with Y is connected.

In particular, a normal ring is unibranch. The notions of unibranch and geometrically unibranch points are used in some theorems in algebraic geometry. For example, there is the following result:

Theorem [1] Let X and Y be two integral locally noetherian schemes and a proper dominant morphism. Denote their function fields by K(X) and K(Y), respectively. Suppose that the algebraic closure of K(Y) in K(X) has separable degree n and that is unibranch. Then the fiber has at most n connected components. In particular, if f is birational, then the fibers of unibranch points are connected.

In EGA, the theorem is obtained as a corollary of Zariski's main theorem.

References

  1. ^ Grothendieck, Alexandre; Dieudonné, Jean (1961). "Eléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie". Publications Mathématiques de l'IHÉS. 11. doi:10.1007/bf02684274. MR 0217085.


This page was last edited on 12 August 2023, at 22:40
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.