To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Geometric programming

From Wikipedia, the free encyclopedia

A geometric program (GP) is an optimization problem of the form

where are posynomials and are monomials. In the context of geometric programming (unlike standard mathematics), a monomial is a function from to defined as

where and . A posynomial is any sum of monomials.[1][2]

Geometric programming is closely related to convex optimization: any GP can be made convex by means of a change of variables.[2] GPs have numerous applications, including component sizing in IC design,[3][4] aircraft design,[5] maximum likelihood estimation for logistic regression in statistics, and parameter tuning of positive linear systems in control theory.[6]

YouTube Encyclopedic

  • 1/3
    Views:
    6 916
    862
    4 255
  • Mod-01 Lec-35 Introduction to Geometric Programming
  • Constrained Geometric programming
  • Mod-01 Lec-36 Constrained Geometric Programming Problem

Transcription

Convex form

Geometric programs are not in general convex optimization problems, but they can be transformed to convex problems by a change of variables and a transformation of the objective and constraint functions. In particular, after performing the change of variables and taking the log of the objective and constraint functions, the functions , i.e., the posynomials, are transformed into  log-sum-exp functions, which are convex, and the functions , i.e., the monomials, become  affine. Hence, this transformation transforms every GP into an equivalent convex program.[2] In fact, this log-log transformation can be used to convert a larger class of problems, known as log-log convex programming (LLCP), into an equivalent convex form.[7]

Software

Several software packages exist to assist with formulating and solving geometric programs.

  • MOSEK is a commercial solver capable of solving geometric programs as well as other non-linear optimization problems.
  • CVXOPT is an open-source solver for convex optimization problems.
  • GPkit is a Python package for cleanly defining and manipulating geometric programming models. There are a number of example GP models written with this package here.
  • GGPLAB is a MATLAB toolbox for specifying and solving geometric programs (GPs) and generalized geometric programs (GGPs).
  • CVXPY is a Python-embedded modeling language for specifying and solving convex optimization problems, including GPs, GGPs, and LLCPs. [7]

See also

References

  1. ^ Richard J. Duffin; Elmor L. Peterson; Clarence Zener (1967). Geometric Programming. John Wiley and Sons. p. 278. ISBN 0-471-22370-0.
  2. ^ a b c S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming. Retrieved 20 October 2019.
  3. ^ M. Hershenson, S. Boyd, and T. Lee. Optimal Design of a CMOS Op-amp via Geometric Programming. Retrieved 8 January 2019.
  4. ^ S. Boyd, S. J. Kim, D. Patil, and M. Horowitz. Digital Circuit Optimization via Geometric Programming. Retrieved 20 October 2019.
  5. ^ W. Hoburg and P. Abbeel. Geometric programming for aircraft design optimization. AIAA Journal 52.11 (2014): 2414-2426.
  6. ^ Ogura, Masaki; Kishida, Masako; Lam, James (2020). "Geometric Programming for Optimal Positive Linear Systems". IEEE Transactions on Automatic Control. 65 (11): 4648–4663. arXiv:1904.12976. doi:10.1109/TAC.2019.2960697. ISSN 0018-9286. S2CID 140222942.
  7. ^ a b A. Agrawal, S. Diamond, and S. Boyd. Disciplined Geometric Programming. Retrieved 8 January 2019.
This page was last edited on 23 October 2022, at 01:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.