To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Generalized Fourier series

From Wikipedia, the free encyclopedia

In mathematics, a generalized Fourier series is a method of expanding a square-integrable function defined on an interval of the real line. The constituent functions of the series expansion form an orthonormal basis of an inner product space. While a Fourier series expansion consists only of trigonometric functions, a generalized Fourier series is a decomposition involving any set of functions satisfying a Sturm-Liouville eigenvalue problem. These expansions find common use in interpolation theory.[1]

YouTube Encyclopedic

  • 1/5
    Views:
    257 646
    710 065
    575 463
    206 917
    279 931
  • how to get the Fourier series coefficients (fourier series engineering mathematics)
  • The Fourier Series and Fourier Transform Demystified
  • How to compute a Fourier series: an example
  • How to Compute a FOURIER SERIES // Formulas & Full Example
  • The Laplace Transform: A Generalized Fourier Transform

Transcription

Definition

Consider a set of square-integrable functions with values in or ,

which are pairwise orthogonal under the inner product
where is a weight function, and represents complex conjugation, i.e., for .

The generalized Fourier series of a square-integrable function , with respect to Φ, is then

where the coefficients are given by

If Φ is a complete set, i.e., an orthogonal basis of the space of all square-integrable functions on [a, b], as opposed to a smaller orthogonal set, the relation becomes equality in the L2 sense, more precisely modulo (not necessarily pointwise, nor almost everywhere).

Example (Fourier–Legendre series)

The Legendre polynomials are solutions to the Sturm–Liouville problem

As a consequence of Sturm-Liouville theory, these polynomials are orthogonal eigenfunctions with respect to the inner product above with unit weight. So we can form a generalized Fourier series (known as a Fourier–Legendre series) involving the Legendre polynomials, and

As an example, calculating the Fourier–Legendre series for over . Now,

and a series involving these terms

which differs from by approximately 0.003. It may be advantageous to use such Fourier–Legendre series since the eigenfunctions are all polynomials and hence the integrals and thus the coefficients are easier to calculate.

Coefficient theorems

Some theorems on the coefficients cn include:

Bessel's inequality

Parseval's theorem

If Φ is a complete set, then

See also

References

  1. ^ Howell, Kenneth B. (2001-05-18). Principles of Fourier Analysis. Boca Raton: CRC Press. doi:10.1201/9781420036909. ISBN 978-0-429-12941-4.
This page was last edited on 13 April 2024, at 04:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.