To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Generalized Clifford algebra

From Wikipedia, the free encyclopedia

In mathematics, a Generalized Clifford algebra (GCA) is a unital associative algebra that generalizes the Clifford algebra, and goes back to the work of Hermann Weyl,[1] who utilized and formalized these clock-and-shift operators introduced by J. J. Sylvester (1882),[2] and organized by Cartan (1898)[3] and Schwinger.[4]

Clock and shift matrices find routine applications in numerous areas of mathematical physics, providing the cornerstone of quantum mechanical dynamics in finite-dimensional vector spaces.[5][6][7] The concept of a spinor can further be linked to these algebras.[6]

The term Generalized Clifford Algebras can also refer to associative algebras that are constructed using forms of higher degree instead of quadratic forms.[8][9][10][11]

YouTube Encyclopedic

  • 1/5
    Views:
    5 398
    2 772
    1 302
    6 865
    3 579
  • Linear Algebra 16h6: Generalized Eigenvectors
  • Linear Algebra 16h7: Generalized Eigenvectors Example
  • Linear Algebra 19m: Matrix Representation of a LT - Vectors in ℝⁿ, Eigenbasis
  • Wild Linear Algebra 12: Generalized dilations and eigenvalues
  • Linear Algebra 16h3: Algebraic Multiplicity Matches Geometric Multiplicty

Transcription

Definition and properties

Abstract definition

The n-dimensional generalized Clifford algebra is defined as an associative algebra over a field F, generated by[12]

and

j,k,l,m = 1,...,n.

Moreover, in any irreducible matrix representation, relevant for physical applications, it is required that

j,k = 1,...,n,   and gcd. The field F is usually taken to be the complex numbers C.

More specific definition

In the more common cases of GCA,[6] the n-dimensional generalized Clifford algebra of order p has the property ωkj = ω,   for all j,k, and . It follows that

and

for all j,k,l = 1,...,n, and

is the pth root of 1.

There exist several definitions of a Generalized Clifford Algebra in the literature.[13]

Clifford algebra

In the (orthogonal) Clifford algebra, the elements follow an anticommutation rule, with ω = −1, and p = 2.

Matrix representation

The Clock and Shift matrices can be represented[14] by n×n matrices in Schwinger's canonical notation as

.

Notably, Vn = 1, VU = ωUV (the Weyl braiding relations), and W−1VW = U (the discrete Fourier transform). With e1 = V , e2 = VU, and e3 = U, one has three basis elements which, together with ω, fulfil the above conditions of the Generalized Clifford Algebra (GCA).

These matrices, V and U, normally referred to as "shift and clock matrices", were introduced by J. J. Sylvester in the 1880s. (Note that the matrices V are cyclic permutation matrices that perform a circular shift; they are not to be confused with upper and lower shift matrices which have ones only either above or below the diagonal, respectively).

Specific examples

Case n = p = 2

In this case, we have ω = −1, and

thus

,

which constitute the Pauli matrices.

Case n = p = 4

In this case we have ω = i, and

and e1, e2, e3 may be determined accordingly.

See also

References

  1. ^ Weyl, H. (1927). "Quantenmechanik und Gruppentheorie". Zeitschrift für Physik. 46 (1–2): 1–46. Bibcode:1927ZPhy...46....1W. doi:10.1007/BF02055756. S2CID 121036548.
    — (1950) [1931]. The Theory of Groups and Quantum Mechanics. Dover. ISBN 9780486602691.
  2. ^ Sylvester, J. J. (1882), A word on Nonions, Johns Hopkins University Circulars, vol. I, pp. 241–2; ibid II (1883) 46; ibid III (1884) 7–9. Summarized in The Collected Mathematics Papers of James Joseph Sylvester (Cambridge University Press, 1909) v III . online and further.
  3. ^ Cartan, E. (1898). "Les groupes bilinéaires et les systèmes de nombres complexes" (PDF). Annales de la Faculté des Sciences de Toulouse. 12 (1): B65–B99.
  4. ^ Schwinger, J. (April 1960). "Unitary operator bases". Proc Natl Acad Sci U S A. 46 (4): 570–9. Bibcode:1960PNAS...46..570S. doi:10.1073/pnas.46.4.570. PMC 222876. PMID 16590645.
    — (1960). "Unitary transformations and the action principle". Proc Natl Acad Sci U S A. 46 (6): 883–897. Bibcode:1960PNAS...46..883S. doi:10.1073/pnas.46.6.883. PMC 222951. PMID 16590686.
  5. ^ Santhanam, T. S.; Tekumalla, A. R. (1976). "Quantum mechanics in finite dimensions". Foundations of Physics. 6 (5): 583. Bibcode:1976FoPh....6..583S. doi:10.1007/BF00715110. S2CID 119936801.
  6. ^ a b c See for example: Granik, A.; Ross, M. (1996). "On a new basis for a Generalized Clifford Algebra and its application to quantum mechanics". In Ablamowicz, R.; Parra, J.; Lounesto, P. (eds.). Clifford Algebras with Numeric and Symbolic Computation Applications. Birkhäuser. pp. 101–110. ISBN 0-8176-3907-1.
  7. ^ Kwaśniewski, A.K. (1999). "On generalized Clifford algebra C(n)4 and GLq(2;C) quantum group". Advances in Applied Clifford Algebras. 9 (2): 249–260. arXiv:math/0403061. doi:10.1007/BF03042380. S2CID 117093671.
  8. ^ Tesser, Steven Barry (2011). "Generalized Clifford algebras and their representations". In Micali, A.; Boudet, R.; Helmstetter, J. (eds.). Clifford algebras and their applications in mathematical physics. Springer. pp. 133–141. ISBN 978-90-481-4130-2.
  9. ^ Childs, Lindsay N. (30 May 2007). "Linearizing of n-ic forms and generalized Clifford algebras". Linear and Multilinear Algebra. 5 (4): 267–278. doi:10.1080/03081087808817206.
  10. ^ Pappacena, Christopher J. (July 2000). "Matrix pencils and a generalized Clifford algebra". Linear Algebra and Its Applications. 313 (1–3): 1–20. doi:10.1016/S0024-3795(00)00025-2.
  11. ^ Chapman, Adam; Kuo, Jung-Miao (April 2015). "On the generalized Clifford algebra of a monic polynomial". Linear Algebra and Its Applications. 471: 184–202. arXiv:1406.1981. doi:10.1016/j.laa.2014.12.030. S2CID 119280952.
  12. ^ For a serviceable review, see Vourdas, A. (2004). "Quantum systems with finite Hilbert space". Reports on Progress in Physics. 67 (3): 267–320. Bibcode:2004RPPh...67..267V. doi:10.1088/0034-4885/67/3/R03.
  13. ^ See for example the review provided in: Smith, Tara L. "Decomposition of Generalized Clifford Algebras" (PDF). Archived from the original (PDF) on 2010-06-12.
  14. ^ Ramakrishnan, Alladi (1971). "Generalized Clifford Algebra and its applications – A new approach to internal quantum numbers". Proceedings of the Conference on Clifford algebra, its Generalization and Applications, January 30–February 1, 1971 (PDF). Madras: Matscience. pp. 87–96.

Further reading

This page was last edited on 30 July 2023, at 19:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.