To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

gauss
Unit systemGaussian and emu-cgs
Unit ofmagnetic flux density (also known as magnetic induction, or the B-field, or magnetic field)
SymbolG or Gs
Named afterCarl Friedrich Gauss
Conversions
1 G or Gs in ...... is equal to ...
   SI derived units   10−4 tesla[a]
   Gaussian base units   1 cm−1/2g1/2s−1
   esu-cgs   1/ccgs esu[b]

The gauss (symbol: G, sometimes Gs), is a unit of measurement of magnetic induction, also known as magnetic flux density. The unit is part of the Gaussian system of units, which inherited it from the older centimetre–gram–second electromagnetic units (CGS-EMU) system. It was named after the German mathematician and physicist Carl Friedrich Gauss in 1936. One gauss is defined as one maxwell per square centimetre.

As the centimetre–gram–second system of units (cgs system) has been superseded by the International System of Units (SI), the use of the gauss has been deprecated by the standards bodies, but is still regularly used in various subfields of science. The SI unit for magnetic flux density is the tesla (symbol T),[1] which corresponds to 10,000gauss.

YouTube Encyclopedic

  • 1/3
    Views:
    919
    928 016
    232 953
  • What is a Gauss? Gauss Unit EXPLAINED
  • Electric Flux, Gauss's Law & Electric Fields, Through a Cube, Sphere, & Disk, Physics Problems
  • Gauss Law Problems, Hollow Charged Spherical Conductor With Cavity, Electric Field, Physics

Transcription

Name, symbol, and metric prefixes

Albeit not a component of the International System of Units, the usage of the gauss generally follows the rules for SI units. Since the name is derived from a person's name, its symbol is the uppercase letter "G". When the unit is spelled out, it is written in lowercase ("gauss"), unless it begins a sentence.[2]: 147–148  The gauss may be combined with metric prefixes,[3]: 128  such as in milligauss, mG (or mGs), or kilogauss, kG (or kGs).

Unit conversions

The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm2 or g/Bi/s2, while the oersted is the unit of H-field. One tesla (T) corresponds to 104 gauss, and one ampere (A) per metre corresponds to 4π × 10−3 oersted.

The units for magnetic flux Φ, which is the integral of magnetic B-field over an area, are the weber (Wb) in the SI and the maxwell (Mx) in the CGS-Gaussian system. The conversion factor is 108 maxwell per weber, since flux is the integral of field over an area, area having the units of the square of distance, thus 104 G/T (magnetic field conversion factor) times the square of 102 cm/m (linear distance conversion factor). 108 Mx/Wb = 104 G/T × (102 cm/m)2.

Typical values

See also

Notes

  1. ^ The electromagnetic Gaussian and SI quantities correspond (symbol '≘') rather than being equal (symbol '=').
  2. ^ ccgs = 2.99792458×1010 is the numeric part of the speed of light when expressed in cgs units.

References

  1. ^ NIST Special Publication 1038, Section 4.3.1
  2. ^ Le Système international d’unités [The International System of Units] (PDF) (in French and English) (9th ed.), International Bureau of Weights and Measures, 2019, ISBN 978-92-822-2272-0
  3. ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6, archived (PDF) from the original on 2021-06-04, retrieved 2021-12-16
  4. ^ Buffett, Bruce A. (2010), "Tidal dissipation and the strength of the Earth's internal magnetic field", Nature, volume 468, pages 952–954, doi:10.1038/nature09643
  5. ^ Hoadley, Rick. "How strong are magnets?". www.coolmagnetman.com. Retrieved 2017-01-26.
  6. ^ Pyrhönen, Juha; Jokinen, Tapani; Hrabovcová, Valéria (2009). Design of Rotating Electrical Machines. John Wiley and Sons. p. 232. ISBN 978-0-470-69516-6.
  7. ^ Laughton, Michael A.; Warne, Douglas F., eds. (2003). "8". Electrical Engineer's Reference Book (Sixteenth ed.). Newnes. ISBN 0-7506-4637-3.
  8. ^ "How strong are magnets?". Experiments with magnets and our surroundings. Magcraft. Retrieved 2007-12-14.
  9. ^ a b Duncan, Robert C. (March 2003). "Magnetars, Soft Gamma Repeaters and Very Strong Magnetic Fields". University of Texas at Austin. Archived from the original on 2007-06-11. Retrieved 2007-05-23.
This page was last edited on 19 February 2024, at 21:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.