To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Gauss–Kuzmin distribution

From Wikipedia, the free encyclopedia

Gauss–Kuzmin
Parameters(none)
Support
pmf
CDF
Mean
Median
Mode
Variance
Skewness(not defined)
Ex. kurtosis(not defined)
Entropy3.432527514776...[1][2][3]

In mathematics, the Gauss–Kuzmin distribution is a discrete probability distribution that arises as the limit probability distribution of the coefficients in the continued fraction expansion of a random variable uniformly distributed in (0, 1).[4] The distribution is named after Carl Friedrich Gauss, who derived it around 1800,[5] and Rodion Kuzmin, who gave a bound on the rate of convergence in 1929.[6][7] It is given by the probability mass function

Gauss–Kuzmin theorem

Let

be the continued fraction expansion of a random number x uniformly distributed in (0, 1). Then

Equivalently, let

then

tends to zero as n tends to infinity.

Rate of convergence

In 1928, Kuzmin gave the bound

In 1929, Paul Lévy[8] improved it to

Later, Eduard Wirsing showed[9] that, for λ=0.30366... (the Gauss-Kuzmin-Wirsing constant), the limit

exists for every s in [0, 1], and the function Ψ(s) is analytic and satisfies Ψ(0)=Ψ(1)=0. Further bounds were proved by K.I.Babenko.[10]

See also

References

  1. ^ Blachman, N. (1984). "The continued fraction as an information source (Corresp.)". IEEE Transactions on Information Theory. 30 (4): 671–674. doi:10.1109/TIT.1984.1056924.
  2. ^ Kornerup, Peter; Matula, David W. (July 1995). LCF: A lexicographic binary representation of the rationals. Journal of Universal Computer Science. 1. pp. 484–503. CiteSeerX 10.1.1.108.5117. doi:10.1007/978-3-642-80350-5_41. ISBN 978-3-642-80352-9.
  3. ^ Vepstas, L. (2008), Entropy of Continued Fractions (Gauss-Kuzmin Entropy) (PDF)
  4. ^ Weisstein, Eric W. "Gauss–Kuzmin Distribution". MathWorld.
  5. ^ Gauss, Johann Carl Friedrich. Werke Sammlung. 10/1. pp. 552–556.
  6. ^ Kuzmin, R. O. (1928). "On a problem of Gauss". Dokl. Akad. Nauk SSSR: 375–380.
  7. ^ Kuzmin, R. O. (1932). "On a problem of Gauss". Atti del Congresso Internazionale dei Matematici, Bologna. 6: 83–89.
  8. ^ Lévy, P. (1929). "Sur les lois de probabilité dont dépendant les quotients complets et incomplets d'une fraction continue". Bulletin de la Société Mathématique de France. 57: 178–194. JFM 55.0916.02.
  9. ^ Wirsing, E. (1974). "On the theorem of Gauss–Kusmin–Lévy and a Frobenius-type theorem for function spaces". Acta Arithmetica. 24 (5): 507–528. doi:10.4064/aa-24-5-507-528.
  10. ^ Babenko, K. I. (1978). "On a problem of Gauss". Soviet Math. Dokl. 19: 136–140.
This page was last edited on 19 February 2019, at 01:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.