To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Gauss's principle of least constraint

From Wikipedia, the free encyclopedia

Karl Friedrich Gauss
Karl Friedrich Gauss

The principle of least constraint is one variational formulation of classical mechanics enunciated by Carl Friedrich Gauss in 1829, equivalent to all other formulations of analytical mechanics. Intuitively, it says that the acceleration of a constrained physical system will be as similar as possible to that of the corresponding unconstrained system.[1]

Statement

The principle of least constraint is a least squares principle stating that the true accelerations of a mechanical system of masses is the minimum of the quantity

where the jth particle has mass , position vector , and applied non-constraint force acting on the mass.

The notation indicates time derivative of a vector function , i.e. position. The corresponding accelerations satisfy the imposed constraints, which in general depends on the current state of the system, .

It is recalled the fact that due to active and reactive (constraint) forces being applied, with resultant , a system will experience an acceleration .

Connections to other formulations

Gauss's principle is equivalent to D'Alembert's principle.

The principle of least constraint is qualitatively similar to Hamilton's principle, which states that the true path taken by a mechanical system is an extremum of the action. However, Gauss's principle is a true (local) minimal principle, whereas the other is an extremal principle.

Hertz's principle of least curvature

Heinrich Hertz
Heinrich Hertz

Hertz's principle of least curvature is a special case of Gauss's principle, restricted by the two conditions that there are no externally applied forces, no interactions (which can usually be expressed as a potential energy), and all masses are equal. Without loss of generality, the masses may be set equal to one. Under these conditions, Gauss's minimized quantity can be written

The kinetic energy is also conserved under these conditions

Since the line element in the -dimensional space of the coordinates is defined

the conservation of energy may also be written

Dividing by yields another minimal quantity

Since is the local curvature of the trajectory in the -dimensional space of the coordinates, minimization of is equivalent to finding the trajectory of least curvature (a geodesic) that is consistent with the constraints.

Hertz's principle is also a special case of Jacobi's formulation of the least-action principle.

See also

References

  • Gauss, C. F. (1829). "Über ein neues allgemeines Grundgesetz der Mechanik". Crelle's Journal. 1829 (4): 232–235. doi:10.1515/crll.1829.4.232. S2CID 199545985.
  • Gauss, C. F. Werke. 5. p. 23.
  • Hertz, H. (1896). Principles of Mechanics. Miscellaneous Papers. III. Macmillan.
  • Lanczos, Cornelius (1986). "IV §8 Gauss's principle of least constraint". The variational principles of mechanics (Reprint of University of Toronto 1970 4th ed.). Courier Dover. pp. 106–110. ISBN 978-0-486-65067-8.
  • Papastavridis, John G. (2014). "6.6 The Principle of Gauss (extensive treatment)". Analytical mechanics: A comprehensive treatise on the dynamics of constrained systems (Reprint ed.). Singapore, Hackensack NJ, London: World Scientific Publishing Co. Pte. Ltd. pp. 911–930. ISBN 978-981-4338-71-4.

External links

  1. ^ Azad, Morteza; Babič, Jan; Mistry, Michael (2019-10-01). "Effects of the weighting matrix on dynamic manipulability of robots". Autonomous Robots. 43 (7): 1867–1879. doi:10.1007/s10514-018-09819-y. ISSN 1573-7527.
This page was last edited on 18 October 2021, at 15:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.