To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Gamma/Gompertz distribution

Parameters Probability density function Note: b=0.4, β=3 Cumulative distribution function ${\displaystyle b,s,\beta >0\,\!}$ ${\displaystyle x\in [0,\infty )\!}$ ${\displaystyle bse^{bx}\beta ^{s}/\left(\beta -1+e^{bx}\right)^{s+1}{\text{where }}b,s,\beta >0}$ ${\displaystyle 1-\beta ^{s}/\left(\beta -1+e^{bx}\right)^{s},x>0,b,s,\beta >0}$${\displaystyle 1-e^{-bsx},\beta =1}$ ${\displaystyle =\left(1/b\right)\left(1/s\right){_{2}{\text{F}}_{1}}\left(s,1;s+1;\left(\beta -1\right)/\beta \right),}$           ${\displaystyle b,s>0,\beta \neq 1}$${\displaystyle =\left(1/b\right)\left[\beta /\left(\beta -1\right)\right]\ln \left(\beta \right),}$           ${\displaystyle b>0,s=1,\beta \neq 1}$${\displaystyle =1/\left(bs\right),\quad b,s>0,\beta =1}$ ${\displaystyle \left(1/b\right)\ln\{\beta \left[\left(1/2\right)^{-1/s}-1\right]+1\}}$ {\displaystyle {\begin{aligned}x^{*}&=(1/b)\ln \left[(1/s)(\beta -1)\right],\\&{\text{with }}0<{\text{F}}(x^{*})<1-(\beta s)^{s}/\left[(\beta -1)(s+1)\right]^{s}<0.632121,\\&\beta >s+1\\&=0,\quad \beta \leq s+1\\\end{aligned}}} ${\displaystyle =2(1/b^{2})(1/s^{2})\beta ^{s}{_{3}{\text{F}}_{2}}(s,s,s;s+1,s+1;1-\beta )}$           ${\displaystyle -{\text{E}}^{2}(\tau |b,s,\beta ),\quad \beta \neq 1}$${\displaystyle =(1/b^{2})(1/s^{2}),\quad \beta =1}$${\displaystyle {\text{with}}}$${\displaystyle {_{3}{\text{F}}_{2}}(a,b,c;d,e;z)=\sum _{k=0}^{\infty }\{(a)_{k}(b)_{k}(c)_{k}/[(d)_{k}(e)_{k}]\}z^{k}/k!}$${\displaystyle {\text{and}}}$${\displaystyle (a)_{k}=\Gamma (a+k)/\Gamma (a)}$ ${\displaystyle {\text{E}}(e^{-tx})}$${\displaystyle =\beta ^{s}[sb/(t+sb)]{_{2}{\text{F}}_{1}}(s+1,(t/b)+s;(t/b)+s+1;1-\beta ),}$${\displaystyle \quad \beta \neq 1}$${\displaystyle =sb/(t+sb),\quad \beta =1}$${\displaystyle {\text{with }}{_{2}{\text{F}}_{1}}(a,b;c;z)=\sum _{k=0}^{\infty }[(a)_{k}(b)_{k}/(c)_{k}]z^{k}/k!}$

In probability and statistics, the Gamma/Gompertz distribution is a continuous probability distribution. It has been used as an aggregate-level model of customer lifetime and a model of mortality risks.

Specification

Probability density function

The probability density function of the Gamma/Gompertz distribution is:

${\displaystyle f(x;b,s,\beta )={\frac {bse^{bx}\beta ^{s}}{\left(\beta -1+e^{bx}\right)^{s+1}}}}$

where ${\displaystyle b>0}$ is the scale parameter and ${\displaystyle \beta ,s>0\,\!}$ are the shape parameters of the Gamma/Gompertz distribution.

Cumulative distribution function

The cumulative distribution function of the Gamma/Gompertz distribution is:

{\displaystyle {\begin{aligned}F(x;b,s,\beta )&=1-{\frac {\beta ^{s}}{\left(\beta -1+e^{bx}\right)^{s}}},{\ }x>0,{\ }b,s,\beta >0\\[6pt]&=1-e^{-bsx},{\ }\beta =1\\\end{aligned}}}

Moment generating function

The moment generating function is given by:

{\displaystyle {\begin{aligned}{\text{E}}(e^{-tx})={\begin{cases}\displaystyle \beta ^{s}{\frac {sb}{t+sb}}{\ }{_{2}{\text{F}}_{1}}(s+1,(t/b)+s;(t/b)+s+1;1-\beta ),&\beta \neq 1;\\\displaystyle {\frac {sb}{t+sb}},&\beta =1.\end{cases}}\end{aligned}}}

where ${\displaystyle {_{2}{\text{F}}_{1}}(a,b;c;z)=\sum _{k=0}^{\infty }[(a)_{k}(b)_{k}/(c)_{k}]z^{k}/k!}$ is a Hypergeometric function.

Properties

The Gamma/Gompertz distribution is a flexible distribution that can be skewed to the right or to the left.

Related distributions

• When β = 1, this reduces to an Exponential distribution with parameter sb.
• The gamma distribution is a natural conjugate prior to a Gompertz likelihood with known, scale parameter ${\displaystyle b\,\!.}$[1]
• When the shape parameter ${\displaystyle \eta \,\!}$ of a Gompertz distribution varies according to a gamma distribution with shape parameter ${\displaystyle \alpha \,\!}$ and scale parameter ${\displaystyle \beta \,\!}$ (mean = ${\displaystyle \alpha /\beta \,\!}$), the distribution of ${\displaystyle x}$ is Gamma/Gompertz.[1]