To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Gödel's speed-up theorem

From Wikipedia, the free encyclopedia

In mathematics, Gödel's speed-up theorem, proved by Gödel (1936), shows that there are theorems whose proofs can be drastically shortened by working in more powerful axiomatic systems.

Kurt Gödel showed how to find explicit examples of statements in formal systems that are provable in that system but whose shortest proof is unimaginably long. For example, the statement:

"This statement cannot be proved in Peano arithmetic in fewer than a googolplex symbols"

is provable in Peano arithmetic (PA) but the shortest proof has at least a googolplex symbols, by an argument similar to the proof of Gödel's first incompleteness theorem: If PA is consistent, then it cannot prove the statement in fewer than a googolplex symbols, because the existence of such a proof would itself be a theorem of PA, a contradiction. But simply enumerating all strings of length up to a googolplex and checking that each such string is not a proof (in PA) of the statement, yields a proof of the statement (which is necessarily longer than a googolplex symbols).

The statement has a short proof in a more powerful system: in fact the proof given in the previous paragraph is a proof in the system of Peano arithmetic plus the statement "Peano arithmetic is consistent" (which, per the incompleteness theorem, cannot be proved in Peano arithmetic).

In this argument, Peano arithmetic can be replaced by any more powerful consistent system, and a googolplex can be replaced by any number that can be described concisely in the system.

Harvey Friedman found some explicit natural examples of this phenomenon, giving some explicit statements in Peano arithmetic and other formal systems whose shortest proofs are ridiculously long (Smoryński 1982). For example, the statement

"there is an integer n such that if there is a sequence of rooted trees T1, T2, ..., Tn such that Tk has at most k + 10 vertices, then some tree can be homeomorphically embedded in a later one"

is provable in Peano arithmetic, but the shortest proof has length at least A(1000), where A(0) = 1 and A(n+1) = 2A(n). The statement is a special case of Kruskal's theorem and has a short proof in second order arithmetic.

If one takes Peano arithmetic together with the negation of the statement above, one obtains an inconsistent theory whose shortest known contradiction is equivalently long.

YouTube Encyclopedic

  • 1/3
    Views:
    10 593
    1 570
    47 881
  • Gödel's Incompleteness Theorem in 90 Seconds!
  • Kurt Gödel's Incompleteness Theorem in Physics #SoME2
  • How Einstein, Heisenberg and Gödel Used Constraints to Rethink the Universe, with Janna Levin

Transcription

See also

References

  • Buss, Samuel R. (1994), "On Gödel's theorems on lengths of proofs. I. Number of lines and speedup for arithmetics", The Journal of Symbolic Logic, 59 (3): 737–756, doi:10.2307/2275906, ISSN 0022-4812, JSTOR 2275906, MR 1295967, S2CID 914043
  • Buss, Samuel R. (1995), "On Gödel's theorems on lengths of proofs. II. Lower bounds for recognizing k symbol provability", in Clote, Peter; Remmel, Jeffrey (eds.), Feasible mathematics, II (Ithaca, NY, 1992), Progr. Comput. Sci. Appl. Logic, vol. 13, Boston, MA: Birkhäuser Boston, pp. 57–90, ISBN 978-0-8176-3675-3, MR 1322274
  • Gödel, Kurt (1936), "Über die Länge von Beweisen", Ergebnisse Eines Mathematischen Kolloquiums (in German), 7: 23–24, ISBN 9780195039641, Reprinted with English translation in volume 1 of his collected works.
  • Smoryński, C. (1982), "The varieties of arboreal experience", Math. Intelligencer, 4 (4): 182–189, doi:10.1007/bf03023553, MR 0685558
This page was last edited on 13 January 2024, at 06:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.