To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, specifically category theory, a subcategory of a category C is a category S whose objects are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows.

YouTube Encyclopedic

  • 1/3
    Views:
    1 025
    323
    24 409
  • Category Theory 1.5 : Properties of Functors, Contravariant Functors, and Subcategories
  • Sira Gratz: Noncrossing partitions and thick subcategories
  • SAT Math: Critical Concepts for an 800 - Passport to Advanced Mathematics (Part 2 of 4)

Transcription

Formal definition

Let C be a category. A subcategory S of C is given by

  • a subcollection of objects of C, denoted ob(S),
  • a subcollection of morphisms of C, denoted hom(S).

such that

  • for every X in ob(S), the identity morphism idX is in hom(S),
  • for every morphism f : XY in hom(S), both the source X and the target Y are in ob(S),
  • for every pair of morphisms f and g in hom(S) the composite f o g is in hom(S) whenever it is defined.

These conditions ensure that S is a category in its own right: its collection of objects is ob(S), its collection of morphisms is hom(S), and its identities and composition are as in C. There is an obvious faithful functor I : SC, called the inclusion functor which takes objects and morphisms to themselves.

Let S be a subcategory of a category C. We say that S is a full subcategory of C if for each pair of objects X and Y of S,

A full subcategory is one that includes all morphisms in C between objects of S. For any collection of objects A in C, there is a unique full subcategory of C whose objects are those in A.

Examples

Embeddings

Given a subcategory S of C, the inclusion functor I : SC is both a faithful functor and injective on objects. It is full if and only if S is a full subcategory.

Some authors define an embedding to be a full and faithful functor. Such a functor is necessarily injective on objects up to isomorphism. For instance, the Yoneda embedding is an embedding in this sense.

Some authors define an embedding to be a full and faithful functor that is injective on objects.[1]

Other authors define a functor to be an embedding if it is faithful and injective on objects. Equivalently, F is an embedding if it is injective on morphisms. A functor F is then called a full embedding if it is a full functor and an embedding.

With the definitions of the previous paragraph, for any (full) embedding F : BC the image of F is a (full) subcategory S of C, and F induces an isomorphism of categories between B and S. If F is not injective on objects then the image of F is equivalent to B.

In some categories, one can also speak of morphisms of the category being embeddings.

Types of subcategories

A subcategory S of C is said to be isomorphism-closed or replete if every isomorphism k : XY in C such that Y is in S also belongs to S. An isomorphism-closed full subcategory is said to be strictly full.

A subcategory of C is wide or lluf (a term first posed by Peter Freyd[2]) if it contains all the objects of C.[3] A wide subcategory is typically not full: the only wide full subcategory of a category is that category itself.

A Serre subcategory is a non-empty full subcategory S of an abelian category C such that for all short exact sequences

in C, M belongs to S if and only if both and do. This notion arises from Serre's C-theory.

See also

References

  1. ^ Jaap van Oosten. "Basic category theory" (PDF).
  2. ^ Freyd, Peter (1991). "Algebraically complete categories". Proceedings of the International Conference on Category Theory, Como, Italy (CT 1990). Lecture Notes in Mathematics. Vol. 1488. Springer. pp. 95–104. doi:10.1007/BFb0084215. ISBN 978-3-540-54706-8.
  3. ^ Wide subcategory at the nLab
This page was last edited on 17 April 2021, at 21:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.