To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Fritz John conditions

From Wikipedia, the free encyclopedia

The Fritz John conditions (abbr. FJ conditions), in mathematics, are a necessary condition for a solution in nonlinear programming to be optimal.[1] They are used as lemma in the proof of the Karush–Kuhn–Tucker conditions, but they are relevant on their own.

We consider the following optimization problem:

where ƒ is the function to be minimized, the inequality constraints and the equality constraints, and where, respectively, , and are the indices sets of inactive, active and equality constraints and is an optimal solution of , then there exists a non-zero vector such that:

if the and are linearly independent or, more generally, when a constraint qualification holds.

Named after Fritz John, these conditions are equivalent to the Karush–Kuhn–Tucker conditions in the case . When , the condition is equivalent to the violation of Mangasarian–Fromovitz constraint qualification (MFCQ). In other words, the Fritz John condition is equivalent to the optimality condition KKT or not-MFCQ.[citation needed]

YouTube Encyclopedic

  • 1/3
    Views:
    10 199
    864
    1 627
  • Operations Research(vol-7)-NON - LINEAR PROGRAMMING(KUHN-TUCKER METHOD) by Srinivasa rao
  • Mod-01 Lec-10 Convex Optimization
  • Mod-01 Lec-06 Convex Optimization

Transcription

References

  1. ^ Takayama, Akira (1985). Mathematical Economics. New York: Cambridge University Press. pp. 90–112. ISBN 0-521-31498-4.

Further reading

  • Rau, Nicholas (1981). "Lagrange Multipliers". Matrices and Mathematical Programming. London: Macmillan. pp. 156–174. ISBN 0-333-27768-6.
This page was last edited on 5 December 2022, at 22:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.