To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Forkhead box C1

From Wikipedia, the free encyclopedia

FOXC1
Identifiers
AliasesFOXC1, ARA, FKHL7, FREAC-3, FREAC3, IGDA, IHG1, IRID1, RIEG3, forkhead box C1, ASGD3
External IDsOMIM: 601090 MGI: 1347466 HomoloGene: 20373 GeneCards: FOXC1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001453

NM_008592

RefSeq (protein)

NP_001444

NP_032618

Location (UCSC)Chr 6: 1.61 – 1.61 MbChr 13: 31.99 – 32 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Forkhead box C1, also known as FOXC1, is a protein which in humans is encoded by the FOXC1 gene.[5][6][7]

YouTube Encyclopedic

  • 1/5
    Views:
    205 750
    90 348
    295 723
    1 854
    6 318
  • Bike Headset Bearing Types, Identification, Compatibility, and Specification Guide
  • Coronavirus: 8 pasos respaldados por la ciencia para fortalecer tus defensas
  • Cómo los adventistas le ganaron a la pandemia de 1918
  • ¡Cuidado con las ensaladas que engordan! Con Maria Jose Hummel
  • Adiós a la diabetes, episodio 2: Consecuencias de la diabetes

Transcription

Function

This gene belongs to the forkhead family of transcription factors which is characterized by a distinct DNA-binding fork head domain. The specific function of this gene has not yet been determined; however, it has been shown to play a role in the regulation of embryonic and ocular development.

Heart development and somitogenesis

FOXC1 and its close relative, FOXC2 are both critical components in the development of the heart and blood vessels, as well as the segmentation of the paraxial mesoderm and the formation of somites. Expression of the Fox proteins range from low levels in the posterior pre-somitic mesoderm (PSM) to the highest levels in the anterior PSM. Homozygous mutant embryos for both Fox proteins failed to form somites 1–8, which indicates the importance of these proteins early on in somite development.[8]

In cardiac morphogenesis, FOXC1 and FOXC2 are required for the proper development of the cardiac outflow tract. The outflow tract forms from a cell population known as the secondary heart field. The Fox proteins are transcribed in the secondary heart field where they regulate the expression of key signaling molecules such as Fgf8, Fgf10, Tbx1, Isl1, and Bmp4.[9]

Clinical significance

Mutations in this gene cause various glaucoma phenotypes including primary congenital glaucoma, autosomal dominant iridogoniodysgenesis anomaly, and Axenfeld–Rieger syndrome type 3.[5] FOXC1 mutations are also found in association with Dandy–Walker malformation.[10]

Role in cancer

FOXC1 induces the epithelial to mesenchymal transition (EMT), which is a process where epithelial cells separate from surrounding cells and begin migration. This process is involved in metastasis, giving FOXC1 a crucial role in cancer. The over expression of FOXC1 results in the up-regulation of fibronectin, vimentin, and N-cadherin, which contribute to cellular migration in nasopharyngeal carcinoma (NPC). The knockout of FOXC1 in human NPC cells down-regulated vimentin, fibronectin, and N-cadherin expression.[11]

FOXC1 transcription factor regulates EMT in basal-like breast cancer (BLBC). Activation of SMO-independent Hedgehog signaling by FOXC1 alters the cancer stem cell (CSC) properties in BLBC cells.[12] These CSCs, which are regulated by FOXC1 signaling, contribute to tumor proliferation, tissue invasion, and relapse.[13]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000054598 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000050295 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: FOXC1 forkhead box C1".
  6. ^ Pierrou S, Hellqvist M, Samuelsson L, Enerbäck S, Carlsson P (October 1994). "Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending". The EMBO Journal. 13 (20): 5002–12. doi:10.1002/j.1460-2075.1994.tb06827.x. PMC 395442. PMID 7957066.
  7. ^ Nishimura DY, Swiderski RE, Alward WL, Searby CC, Patil SR, Bennet SR, Kanis AB, Gastier JM, Stone EM, Sheffield VC (June 1998). "The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25". Nature Genetics. 19 (2): 140–7. doi:10.1038/493. PMID 9620769. S2CID 34692231.
  8. ^ Kume T, Jiang H, Topczewska JM, Hogan BL (September 2001). "The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis". Genes & Development. 15 (18): 2470–82. doi:10.1101/gad.907301. PMC 312788. PMID 11562355.
  9. ^ Seo S, Kume T (2006). "Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract". Developmental Biology. 296 (2): 421–436. doi:10.1016/j.ydbio.2006.06.012. PMID 16839542.
  10. ^ Haldipur, P.; Gillies, G. S.; Janson, O. K.; Chizhikov, V. V.; Mithal, D. S.; Miller, R. J.; Millen, K. J. (2014). "Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth". eLife. 3: e03962. doi:10.7554/eLife.03962. PMC 4281880. PMID 25513817.
  11. ^ Ou-Yang L, Xiao SJ, Liu P, Yi SJ, Zhang XL, Ou-Yang S, Tan SK, Lei X (December 2015). "Forkhead box C1 induces epithelial‑mesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma". Molecular Medicine Reports. 12 (6): 8003–9. doi:10.3892/mmr.2015.4427. PMC 4758279. PMID 26461269.
  12. ^ Han, Bingchen; Qu, Ying; Jin, Yanli; Yu, Yi; Deng, Nan; Wawrowsky, Kolja; Zhang, Xiao; Li, Na; Bose, Shikha (2015). "FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer". Cell Reports. 13 (5): 1046–1058. doi:10.1016/j.celrep.2015.09.063. PMC 4806384. PMID 26565916.
  13. ^ Han B, Qu Y, Jin Y, Yu Y, Deng N, Wawrowsky K, Zhang X, Li N, Bose S, Wang Q, Sakkiah S, Abrol R, Jensen TW, Berman BP, Tanaka H, Johnson J, Gao B, Hao J, Liu Z, Buttyan R, Ray PS, Hung MC, Giuliano AE, Cui X (November 2015). "FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer". Cell Reports. 13 (5): 1046–58. doi:10.1016/j.celrep.2015.09.063. PMC 4806384. PMID 26565916.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


This page was last edited on 3 December 2023, at 10:03
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.