To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Filon quadrature

From Wikipedia, the free encyclopedia

In numerical analysis, Filon quadrature or Filon's method is a technique for numerical integration of oscillatory integrals. It is named after English mathematician Louis Napoleon George Filon, who first described the method in 1934.[1]

Description

The method is applied to oscillatory definite integrals in the form:

where is a relatively slowly-varying function and is either sine or cosine or a complex exponential that causes the rapid oscillation of the integrand, particularly for high frequencies. In Filon quadrature, the is divided into subintervals of length , which are then interpolated by parabolas. Since each subinterval is now converted into a Fourier integral of quadratic polynomials, these can be evaluated in closed-form by integration by parts. For the case of , the integration formula is given as:[1][2]

where

Explicit Filon integration formulas for sine and complex exponential functions can be derived similarly.[2] The formulas above fail for small values due to catastrophic cancellation;[3] Taylor series approximations must be in such cases to mitigate numerical errors, with being recommended as a possible switchover point for 44-bit mantissa.[2]

Modifications, extensions and generalizations of Filon quadrature have been reported in numerical analysis and applied mathematics literature; these are known as Filon-type integration methods.[4][5] These include Filon-trapezoidal[2] and Filon–Clenshaw–Curtis methods.[6]

Applications

Filon quadrature is widely used in physics and engineering for robust computation of Fourier-type integrals. Applications include evaluation of oscillatory Sommerfeld integrals for electromagnetic and seismic problems in layered media[7][8][9] and numerical solution to steady incompressible flow problems in fluid mechanics,[10] as well as various different problems in neutron scattering,[11] quantum mechanics[12] and metallurgy.[13]

See also

References

  1. ^ a b Filon, L. N. G. (1930). "III.—On a Quadrature Formula for Trigonometric Integrals". Proceedings of the Royal Society of Edinburgh. 49: 38–47. doi:10.1017/S0370164600026262.
  2. ^ a b c d Davis, Philip J.; Rabinowitz, Philip (1984). Methods of Numerical Integration (2 ed.). Academic Press. pp. 151–160. ISBN 9781483264288.
  3. ^ Chase, Stephen M.; Fosdick, Lloyd D. (1969). "An algorithm for Filon quadrature". Communications of the ACM. 12 (8): 453–457. doi:10.1145/363196.363209.
  4. ^ Iserles, A.; Nørsett, S. P. (2004). "On quadrature methods for highly oscillatory integrals and their implementation". BIT Numerical Mathematics. 44: 755–772. doi:10.1007/s10543-004-5243-3.
  5. ^ Xiang, Shuhuang (2007). "Efficient Filon-type methods for". Numerische Mathematik. 105: 633–658. doi:10.1007/s00211-006-0051-0.
  6. ^ Domínguez, V.; Graham, I. G.; Smyshlyaev, V. P. (2011). "Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals". IMA Journal of Numerical Analysis. 31 (4): 1253–1280. doi:10.1093/imanum/drq036.
  7. ^ Červený, Vlastislav; Ravindra, Ravi (1971). Theory of Seismic Head Waves. University of Toronto Press. pp. 287–289. ISBN 9780802000491.
  8. ^ Mosig, J. R.; Gardiol, F. E. (1983). "Analytical and numerical techniques in the Green's function treatment of microstrip antennas and scatterers". IEE Proceedings H. 130 (2): 175–182. doi:10.1049/ip-h-1.1983.0029.
  9. ^ Chew, Weng Cho (1990). Waves and Fields in Inhomogeneous Media. New York: Van Nostrand Reinhold. p. 118. ISBN 9780780347496.
  10. ^ Dennis, S. C. R.; Chang, Gau-Zu (1970). "Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100". Journal of Fluid Mechanics. 42 (3): 471–489. doi:10.1017/S0022112070001428.
  11. ^ Grimley, David I.; Wright, Adrian C.; Sinclair, Roger N. (1990). "Neutron scattering from vitreous silica IV. Time-of-flight diffraction". Journal of Non-Crystalline Solids. 119 (1): 49–64. doi:10.1016/0022-3093(90)90240-M.
  12. ^ Fedotov, A.; Ilderton, A.; Karbstein, F.; King, B.; Seipt, D.; Taya, H.; Torgrimsson, G. (2023). "Advances in QED with intense background fields". Physics Reports. 1010: 1–138. arXiv:2203.00019. doi:10.1016/j.physrep.2023.01.003.
  13. ^ Thouless, M. D.; Evans, A. G.; Ashby, M. F.; Hutchinson, J. W. (1987). "The edge cracking and spalling of brittle plates". Acta Metallurgica. 35 (6): 1333–1341. doi:10.1016/0001-6160(87)90015-0.
This page was last edited on 28 May 2024, at 16:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.