To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

File:Calcite (Cave-in-Rock Mining District, Illinois, USA) 3 (42590140555).jpg

From Wikipedia, the free encyclopedia

Original file(3,185 × 2,998 pixels, file size: 5.42 MB, MIME type: image/jpeg)

Summary

Description

Calcite (botryoidal aggregates) from Illinois, USA.

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5400 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

The carbonate minerals all contain one or more carbonate (CO3-2) anions.

Calcite is a common mineral. It is calcium carbonate (CaCO3). It has a nonmetallic luster, commonly clearish to whitish to yellowish to grayish in color, is moderately soft (H≡3), moderately light-weight, has hexagonal crystals, and rhombohedral cleavage (three cleavage planes at 75º & 105º angles - cleavage pieces look like lopsided boxes). The easiest way to identify calcite is to drop acid on it - it easily bubbles (effervesces) in acid. The bubbles are carbon dioxide gas. If the acid is dilute hydrochloric acid, the chemical reaction is:

2HCl(aq) + CaCO3(s) -->> CO2(g)↑ + H2O(l) + CaCl2(aq)

The most important & voluminous calcitic rocks in the world are limestone (sedimentary), marble (metamorphic), carbonatite (igneous), and travertine (speleothem, or "cave formations", and many hotspring deposits). Quite a few hydrothermal veins in the world are calcitic or have calcite as a principal component.

This specimen is from a Mississippi Valley-type deposit in southern Illinois. Commonly abbreviated "MVT", Mississippi Valley-type deposits are named for a series of mineral deposits that occur in non-deformed platform sedimentary rocks along the Upper Mississippi River Valley, USA. Many specific minerals occur in MVT deposits, but are dominated by galena, sphalerite, barite, and fluorite. These minerals occur in caves and karst, paleokarst structures, in collapse fabrics, in pull-apart structures, etc. MVT deposits in America are mined as important, large sources of lead ore and zinc ore. The classic areas for MVT deposits are southern Illinois, the tristate area of Oklahoma-Missouri-Kansas, northern Kentucky, southwestern Wisconsin, and southeastern Missouri. The minerals are hydrothermal in origin and were precipitated from basinal brines that were flushed out to the edges of large sedimentary basins (e.g., the Illinois Basin and the Black Warrior Basin). In basin edge areas, the brines came into contact with Mississippian-aged carbonate rocks (limestone and dolostone), which caused mineralization. The brines were 15% to 25% salinity with temperatures of 50 to 200 degrees Celsius (commonly 100 to 150 degrees C). MVT mineralization usually occurs in limestone and dolostone but can also be hosted in shales, siltstones, sandstones, and conglomerates. Gangue minerals include pyrite, marcasite, calcite, aragonite, dolomite, siderite, and quartz. Up to 40 or 50 pulses of brine fluids are recorded in banding of mineral suites in MVT deposits (for example, sphalerite coatings in veins have a stratigraphy - each layer represents a pulse event). Each pulse of water was probably expelled rapidly - overpressurization and friction likely caused the water to heat up. Some bitumen (crystallized organic matter) can occur, which is an indication of the basinal origin of the brines. The presence of asphalt-bitumen indicates some hydrocarbon migration occurred. Some petroleum inclusions are found within fluorite crystals and petroleum scum occurs on fluorite crystals. MVT deposits are associated with oil fields and the temperature of mineral precipitation matches the petroleum window. The brines may simply have accompanied hydrocarbon fluids as they migrated updip.

The high temperatures of these basin periphery deposits wasn't necessarily influenced by igneous hydrothermal activity. Hot fluids can occur in basins that are deep enough for the geothermal gradient to be ~100 to 150 degrees Celsius. If a permeable conduit horizon is present in a succession of interbedded siliciclastic sedimentary rocks, migration of hot, deep basinal brines may be quick enough to get MVT deposit conditions at basin margins.

MVT deposits occur in the Upper Mississippi Valley of America as well as in northern Africa, Scandinavia, northwestern Canada, at scattered sites in Europe, and at some sites in the American Cordillera. Some of these occurrences are in deformed host rocks. MVT deposits have little to no precious metals - maybe a little copper (Cu). Mineralization is usually associated with limestone or dolostone in fracture fillings and vugs. Little host rock alteration has occurred - usually only dolomitization of limestones.

The age of the host rocks in the Mississippi Valley area varies - it ranges from Cambrian to Mississippian. Dating of mineralization has been difficult, but published ages indicate a near-latest Paleozoic to Mesozoic timing.

MVT deposits in the Upper Mississippi River area are often divided into three subtypes based on the dominant mineral: 1) lead-rich (galena dominated); 2) zinc-rich (sphalerite dominated); and 3) fluorite-rich.

The crystalline calcite specimen shown here is from the Illinois-Kentucky Fluorspar District ("fluorspar" is a very old name for fluorite), which is an MVT fluoritic subtype. Fluorite and fluorite-rich rocks are mined for the fluorine, which is principally used by the chemical industry to make HF - hydrofluoric acid. Fluorite mineralization in this district occurred at about 277 Ma, during the Early Permian, according to one published study (Chesley et al., 1994). Another study concluded that fluorite mineralization was much later, during the Late Jurassic (see Symons, 1994).

Locality: unrecorded/undisclosed mine in the Cave-in-Rock Mining District, southern Illinois, USA


Photo gallery of calcite: <a href="http://www.mindat.org/gallery.php?min=859" rel="nofollow">www.mindat.org/gallery.php?min=859</a>


Some info. on Mississippi Valley-type deposits was synthesized from:

Chesley et al. (1994) - Direct dating of Mississippi Valley-type mineralization: use of Sm-Nd in fluorite. Economic Geology 89: 1192-1199.

Symons (1994) - Paleomagnetism and the Late Jurassic genesis of the Illinois-Kentucky fluorspar deposits. Economic Geology 89: 438-449.

Rakovan (2006) - Mississippi Valley-type deposits. Rocks & Minerals 81(January/February 2006): 69-71.

Fisher et al. (2013) - Fluorite in Mississippi Valley-type deposits. Rocks & Minerals 88(January/February 2013): 20-47.
Date
Source Calcite (Cave-in-Rock Mining District, Illinois, USA) 3
Author James St. John

Licensing

w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 2.0 Generic license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
This image was originally posted to Flickr by James St. John at https://flickr.com/photos/47445767@N05/42590140555 (archive). It was reviewed on 6 December 2019 by FlickreviewR 2 and was confirmed to be licensed under the terms of the cc-by-2.0.

6 December 2019

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

5 May 2018

0.01666666666666666666 second

11.614 millimetre

image/jpeg

57f4343eb1baa13b4236586cd50e7566c2790a49

5,680,692 byte

2,998 pixel

3,185 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current02:51, 6 December 2019Thumbnail for version as of 02:51, 6 December 20193,185 × 2,998 (5.42 MB)Ser Amantio di NicolaoTransferred from Flickr via #flickr2commons
The following pages on the English Wikipedia use this file (pages on other projects are not listed):

Metadata

Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.