To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Diagram of part of the electromagnetic spectrum

Far infrared (FIR) refers to a specific range within the infrared spectrum of electromagnetic radiation. It encompasses radiation with wavelengths ranging from 15 μm (micrometers) to 1 mm, which corresponds to a frequency range of approximately 20 THz to 300 GHz. This places far infrared radiation within the CIE IR-B and IR-C bands.[1] The longer wavelengths of the FIR spectrum overlap with a range known as terahertz radiation.[2] Different sources may use different boundaries to define the far infrared range. For instance, astronomers often define it as wavelengths between 25 μm and 350 μm.[3] Infrared photons possess significantly lower energy than photons in the visible light spectrum, with tens to hundreds of times less energy. [4]

YouTube Encyclopedic

  • 1/3
    Views:
    2 313 010
    8 534
    24 364
  • Light: Crash Course Astronomy #24
  • How do astronomers use infrared light to explore our Universe?
  • The Physics Show - Infrared Light, Astronomy and SOFIA

Transcription

Hey, Phil Plait here and this is Crash Course Astronomy. In last week’s episode, I mentioned that nearly all the information we have about the Universe comes in the form of light. But how does that light get made? What can it tell us about these astronomical objects? And honestly, what is light? Here’s a hint. Light is a wave. It took centuries of thought and experiments to figure that out, and to also figure out that, at its most basic, light is a form of energy. It travels in waves, similar to waves of water in the ocean. Except with light, the things doing the waving are electric and magnetic fields. Literally—light is a self-contained little bundle of these two fields, intertwined. That’s why we call light electromagnetic radiation. The details of this are very complex, but we can make some pretty good overall observations about light just from thinking of it as a wave. If you’re floating in the ocean, you’ll move up as a wave passes you, then back down, then back up again when the next wave rolls by. The distance between these crests in the wave is called the wavelength. Since light is a wave, it has a wavelength as well, and this may be its single most important feature. That’s because the energy of light is tied to its wavelength. Light with a shorter wavelength has more energy, and light with a longer wavelength has less energy. And our eyes have a really convenient way of detecting these different energies: color! What you think of as the color violet is actually light hitting your eye that has a short wavelength. Red light has a longer wavelength, about twice the distance between crests as violet light. All the colors in between—orange, yellow, green, blue—have intermediate wavelengths. This spread of colors, wavelengths, is called a spectrum. Over millions of years, our eyes have evolved to detect the kind of light the Sun emits most strongly. Well, that makes sense; that makes it easier for us to see! We call this kind of light visible light. But that’s just the narrowest sampling of all the different wavelengths light can have. If light has a slightly shorter wavelength than what our eyes can see, it’s invisible to us, but it’s still real. We call that ultraviolet light. Light with shorter wavelengths than that fall into the X-ray part of the spectrum, and light waves with the shortest wavelengths of all are called gamma rays. At the other end, light with slightly longer wavelengths than the reddest color we can see is called infrared light. Light waves longer than that are called microwaves, and those with the longest wavelengths of all are called radio waves. These different groups don’t really have hard and fast definitions; just think of them as general guidelines. But together, we call all of these different kinds of light the electromagnetic or EM spectrum. And remember, energy goes up when the wavelength gets shorter. So ultraviolet light has a higher energy than violet, X-rays have a higher energy than that, and gamma rays have the highest energy of all. Infrared light has lower energy than red light, microwaves lower than that, and radio waves have the lowest energy. When you look at the whole EM spectrum, you’ll probably notice that we really do only see a teeny little sliver of it. Most of the Universe is invisible to our eyes! That’s why we build different kinds of telescopes -- to detect the kind of light our eyes can’t detect. They let us see a lot of stuff that otherwise we’d never notice. So you might be asking: how is light made? Well, one of the most basic properties of matter is that when you heat it up it gains energy, and then it tries to get rid of that energy. Since light is energy, one way to get rid of energy is to emit light. Another important property of matter is that the kind of light an object emits depends on its temperature. An object that’s hotter will emit light with a higher energy, that is, a shorter wavelength. Cooler objects give off light with a longer wavelength. You may have seen this in action. Heat up an iron bar and it starts to glow red, then orange, then yellow as it gets hotter. The color, the wavelength, of light emitted changes as the bar heats up. Astronomers use a shorthand for this. We say that light with a shorter wavelength is “bluer”, and light with a longer wavelength is “redder”. Don’t take this literally! We don’t really mean more blue or more red, just that the wavelengths are decreasing or increasing. So in this lingo, ultraviolet light is bluer than blue, and X-rays are bluer than ultraviolet. So objects that are more energetic, that have a higher temperature, are bluer than cooler, redder objects. This rule of thumb works really well for dense objects like iron bars and stars. Even humans! You emit light, but it’s in the far infrared, well beyond what our eyes can see. There are less dense objects in space, too, like gas clouds, and the way they emit light is different. To understand that, we have to zoom in on them. Way, way in, and look at their individual atoms. And to understand that, we need to take a brief diversion into atomic structure. Atoms are the building blocks of matter. In general, atoms are made up of three subatomic particles: Protons, neutrons, and electrons. Protons have a positive electric charge, electrons a negative charge, and neutrons are neutral. Protons and neutrons are much more massive than electrons, and occupy the centers of atoms, in what’s called the nucleus. Electrons whiz around the nucleus, their negative charge attracted by the protons’ positive charge. The type of atom depends on how many protons it has in the nucleus. Hydrogen has one proton, helium two, lithium three, and so on up the periodic table of elements. It’s common to think of the electron as orbiting the nucleus like a planet orbits the Sun, but that’s not really the case. The real situation is fiendishly complex and involves pretty hairy quantum mechanics, but in the end, the electron is only allowed to occupy very specific volumes of space around the nucleus, and those depend on the electron’s energy. Think of these like stairs on a staircase, where the landing is the nucleus. When you walk up the stairs, you have to use energy to go up. And when you do, you have to go up a whole step at a time; if you don’t have the energy to get to the next step, you can’t move. You can be on the first step, or the second step, but you can’t be on the first-and-a-halfths step. There isn’t one! Electrons are the same way. They whiz around the nucleus with a very discrete amount of energy. If you give them an additional precise amount of energy, they’ll move up to the next energy level, the next step, but if you give them the wrong amount they’ll just sit there. The opposite is true as well; electrons can be in a higher energy state, up on a higher step, and then give off energy when they jump down. The amount they give off is exactly the same amount needed to get them to jump up in the first place. How do they get this energy? Light! If light hitting the atom has just the right amount of energy, the electron will absorb it and jump up. It can also jump down and emit light at that energy, too. An electron can also jump two steps, or three, or whatever, but it needs exactly the right energy to do it. But as I said earlier, energy and wavelength are the same thing, and that’s equivalent to color. So when an electron jumps up or down, it absorbs or emits a very specific color of light. Not only that, but the steps are different for different atoms. To stick with our analogy, it’s like different atoms are different staircases, with different heights between the steps. So when an electron jumps down a step in a hydrogen atom, it emits a different energy, a different color of light, than an electron jumping down in a helium or calcium atom. And this, THIS, is the key to the Universe. Because different atoms emit different colors of light, if we can measure that light, in principle we can determine what an object is made of, even if we can’t touch it. Even if it’s a bazillion light years away! And we can. Can you tell the difference between these two squares? They’re a very slightly different shade of red. Your eye probably can’t tell the difference, but a spectrometer can. This is a device that can precisely measure the wavelength of light, and can for example distinguish light emitted by a hydrogen atom from light emitted by helium. When you hook one of these spectrometers up to a telescope, you can figure out what astronomical objects are made of. In the case of thin gas clouds in space, the atoms are basically floating free, rarely bumping into one another. The atoms emit those individual colors of light, allowing us to identify them. Unlike dense stars, the color of the thinner gas depends more on what’s in it than its temperature. And this is how we learned what the Universe is made of. Stars and gas clouds in space are mostly hydrogen, with some helium and heavier elements thrown in. Jupiter has methane in its atmosphere, Venus carbon dioxide. Everything in the Universe has its own mix of ingredients, like cakes at a bakery. With spectroscopy, we can taste them. But wait! There’s more. You’re probably familiar with the Doppler effect; the change in pitch when, say, a motorcycle goes by. In sound, the wavelength defines the pitch; higher tones (“eeeee”) have shorter wavelengths, and lower tones (“eeeee”) longer wavelengths. When the motorcycle is headed toward you, the sound waves get compressed, causing the pitch to rise. After it passes you, the pitch drops because the wavelengths get stretched out. The same thing happens with light. If an object is headed toward you, the wavelength of light from the source gets compressed, shorter. We say the light is blue-shifted. If it heads away, the wavelength gets longer, and it’s red-shifted. Apply that to a spectrum, and by measuring that shift we can tell if an object is moving toward or away from us. Here’s a teaser: This becomes super important later, when we talk about galaxies. Spoiler alert: The Universe is expanding, and it's this redshift that allowed us to figure that out. And that’s still not the end of it. With other spectroscopic techniques we can determine if an object is spinning and how fast, whether it has a magnetic field and how strong it is, and even how massive and dense an object is. A vast amount of the fundamental properties of astronomical objects can be found just by dissecting their light into individual colors. Almost everything we know about the Universe comes from the light objects in it give off. Pictures of astronomical objects show us their structure, their beauty, and hint at their history. But with spectra, we can examine their blueprints. Today you learned that light is a form of energy. Its wavelength tells us its energy and color. Spectroscopy allows us to analyze those colors and determine an object’s temperature, density, spin, motion, and chemical composition. Crash Course is produced in association with PBS Digital Studios. Head over to their channel for even more awesome videos. This episode was written by me, Phil Plait. The script was edited by Blake de Pastino, and our consultant is Dr. Michelle Thaller. It was directed by Nicholas Jenkins, the script supervisor and editor is Nicole Sweeney, the sound designer was Michael Aranda, and the graphics team is Thought Café.

Applications

Astronomy

Objects within a temperature range of approximately 5 K to 340 K emit radiation in the far infrared range as a result of black-body radiation, in accordance with Wien's displacement law. This characteristic is utilized in the observation of interstellar gases, which are frequently associated with the formation of new stars.

The brightness observed in far infrared images of the center of the Milky Way galaxy arises from the high density of stars in that region, which heats the surrounding dust and induces radiation emission in the far infrared spectrum. Excluding the center of the Milky Way galaxy, the galaxy M82 is the most prominent far-infrared object in the sky, with its central region emitting amounts of far infrared light equivalent to the combined emissions of all the stars in the Milky Way. As of 29 May 2012, the source responsible for heating the dust at the center of M82 remains unknown.[3]

Human body detection

Certain human proximity sensors utilize passive infrared sensing within the far infrared wavelength range to detect the presence of stationary[5] and/or moving human bodies.[6]

Therapeutic modality

Researchers have observed that among all forms of radiant heat, only far-infrared radiation transfers energy solely in the form of heat that can be sensed by the human body.[7] They have found that this type of radiant heat can penetrate the skin up to a depth of approximately 1.5 inches (3.8 cm). In the field of biomedicine, experiments have been conducted using fabrics woven with FIR-emitting ceramics embedded in their fibers. These studies have indicated a potential delay in the onset of fatigue induced by muscle contractions in participants.[8] The researchers have suggested that the emission of far-infrared radiation by these ceramics (referred to as cFIR) could facilitate cellular repair.

Certain heating pads have been marketed to provide "far infrared" therapy, which is claimed to offer deeper penetration.[citation needed] However, the infrared radiation emitted by an object is determined by its temperature. Therefore, all heating pads emit the same type of infrared radiation if they are at the same temperature. Higher temperatures will result in greater infrared radiation, but caution must be exercised to avoid burns.

References

  1. ^ Byrnes, James (2009). Unexploded Ordnance Detection and Mitigation. Springer. pp. 21–22. ISBN 978-1-4020-9252-7.
  2. ^ Glagoleva-Arkadiewa, A. (1924). "Short electromagnetic waves of wave-length up to 82 Microns". Nature. 2844 (113): 640. doi:10.1038/113640a0.
  3. ^ a b "Near, mid and far-infrared". Caltech Infrared Processing and Analysis Center. California Institute of Technology. Archived from the original on 2012-05-29. Retrieved 2013-01-28.
  4. ^ Gregory Hallock Smith (2006), Camera lenses: from box camera to digital, SPIE Press, p. 4, ISBN 978-0-8194-6093-6
  5. ^ "Mems Thermal Sensors". Omron Electronic Components Web. Omron. Retrieved 7 August 2015.
  6. ^ "Pyroelectric Detectors & Sensors for Far Infrared, FIR (5.0 μm – 15 μm)". Excelitas. Retrieved 7 August 2015.
  7. ^ Vatansever, Fatma; Hamblin, Michael R. (2012). "Far infrared radiation (FIR): Its biological effects and medical applications". Photonics & Lasers in Medicine. 1 (4): 255–266. doi:10.1515/plm-2012-0034. PMC 3699878. PMID 23833705.
  8. ^ Leung, Ting-Kai (2011). "A Pilot Study of Ceramic Powder Far-Infrared Ray Irradiation (CFIR) on Physiology: Observation of Cell Cultures and Amphibian Skeletal Muscle". The Chinese Journal of Physiology. 54 (4): 247–254. doi:10.4077/CJP.2011.AMM044. PMID 22129823.

External links

This page was last edited on 22 March 2024, at 12:41
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.