To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Faltings's theorem

From Wikipedia, the free encyclopedia

Faltings's theorem
Gerd Faltings
FieldArithmetic geometry
Conjectured byLouis Mordell
Conjectured in1922
First proof byGerd Faltings
First proof in1983
GeneralizationsBombieri–Lang conjecture
Mordell–Lang conjecture
ConsequencesSiegel's theorem on integral points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell,[1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings.[2] The conjecture was later generalized by replacing by any number field.

YouTube Encyclopedic

  • 1/4
    Views:
    2 159
    850
    4 487
    899
  • Intro to Mordell Theorem
  • Proof Mordell Theorem
  • Convolution Theorem for Fourier Transform || Falting theorem for Fourier transform ||
  • Ouroboros: connections between arithmetic and geometry | Daniel Litt

Transcription

Background

Let be a non-singular algebraic curve of genus over . Then the set of rational points on may be determined as follows:

  • When , there are either no points or infinitely many. In such cases, may be handled as a conic section.
  • When , if there are any points, then is an elliptic curve and its rational points form a finitely generated abelian group. (This is Mordell's Theorem, later generalized to the Mordell–Weil theorem.) Moreover, Mazur's torsion theorem restricts the structure of the torsion subgroup.
  • When , according to Faltings's theorem, has only a finite number of rational points.

Proofs

Igor Shafarevich conjectured that there are only finitely many isomorphism classes of abelian varieties of fixed dimension and fixed polarization degree over a fixed number field with good reduction outside a fixed finite set of places.[3] Aleksei Parshin showed that Shafarevich's finiteness conjecture would imply the Mordell conjecture, using what is now called Parshin's trick.[4]

Gerd Faltings proved Shafarevich's finiteness conjecture using a known reduction to a case of the Tate conjecture, together with tools from algebraic geometry, including the theory of Néron models.[5] The main idea of Faltings's proof is the comparison of Faltings heights and naive heights via Siegel modular varieties.[a]

Later proofs

Consequences

Faltings's 1983 paper had as consequences a number of statements which had previously been conjectured:

  • The Mordell conjecture that a curve of genus greater than 1 over a number field has only finitely many rational points;
  • The Isogeny theorem that abelian varieties with isomorphic Tate modules (as -modules with Galois action) are isogenous.

A sample application of Faltings's theorem is to a weak form of Fermat's Last Theorem: for any fixed there are at most finitely many primitive integer solutions (pairwise coprime solutions) to , since for such the Fermat curve has genus greater than 1.

Generalizations

Because of the Mordell–Weil theorem, Faltings's theorem can be reformulated as a statement about the intersection of a curve with a finitely generated subgroup of an abelian variety . Generalizing by replacing by a semiabelian variety, by an arbitrary subvariety of , and by an arbitrary finite-rank subgroup of leads to the Mordell–Lang conjecture, which was proved in 1995 by McQuillan[9] following work of Laurent, Raynaud, Hindry, Vojta, and Faltings.

Another higher-dimensional generalization of Faltings's theorem is the Bombieri–Lang conjecture that if is a pseudo-canonical variety (i.e., a variety of general type) over a number field , then is not Zariski dense in . Even more general conjectures have been put forth by Paul Vojta.

The Mordell conjecture for function fields was proved by Yuri Ivanovich Manin[10] and by Hans Grauert.[11] In 1990, Robert F. Coleman found and fixed a gap in Manin's proof.[12]

Notes

  1. ^ "Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof." Bloch, Spencer (1984). "The Proof of the Mordell Conjecture". The Mathematical Intelligencer. 6 (2): 44. doi:10.1007/BF03024155. S2CID 306251.

Citations

References

This page was last edited on 10 April 2024, at 17:25
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.