To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

FP (complexity)

From Wikipedia, the free encyclopedia

In computational complexity theory, the complexity class FP is the set of function problems that can be solved by a deterministic Turing machine in polynomial time. It is the function problem version of the decision problem class P. Roughly speaking, it is the class of functions that can be efficiently computed on classical computers without randomization.

The difference between FP and P is that problems in P have one-bit, yes/no answers, while problems in FP can have any output that can be computed in polynomial time. For example, adding two numbers is an FP problem, while determining if their sum is odd is in P.[1]

Polynomial-time function problems are fundamental in defining polynomial-time reductions, which are used in turn to define the class of NP-complete problems.[2]

YouTube Encyclopedic

  • 1/3
    Views:
    651
    9 306
    649
  • Checked Complexity with Typed Simplicity - NE Scala
  • 2. 3-Partition I
  • Two-Sample Tests, Integral Probability Metrics, and GAN Objective - Dougal J. Sutherland

Transcription

Formal definition

FP is formally defined as follows:

A binary relation is in FP if and only if there is a deterministic polynomial time algorithm that, given , either finds some such that holds, or signals that no such exists.

Related complexity classes

  • FNP is the set of binary relations for which there is a polynomial time algorithm that, given x and y, checks whether P(x,y) holds. Just as P and FP are closely related, NP is closely related to FNP. FP = FNP if and only if P = NP.
  • Because a machine that uses logarithmic space has at most polynomially many configurations, FL, the set of function problems which can be calculated in logspace, is contained in FP. It is not known whether FL = FP; this is analogous to the problem of determining whether the decision classes P and L are equal.

References

  1. ^ Bürgisser, Peter (2000). Completeness and reduction in algebraic complexity theory. Algorithms and Computation in Mathematics. Vol. 7. Berlin: Springer-Verlag. p. 66. ISBN 3-540-66752-0. Zbl 0948.68082.
  2. ^ Rich, Elaine (2008). "28.10 "The problem classes FP and FNP"". Automata, computability and complexity: theory and applications. Prentice Hall. pp. 689–694. ISBN 0-13-228806-0.

External links

This page was last edited on 25 March 2023, at 18:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.