To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Extraordinary magnetoresistance

From Wikipedia, the free encyclopedia

A diagram outlining the arrangement of a typical circular geometry semiconductor-metal hybrid EMR system.
Diagram of a typical circular geometry semiconductor–metal hybrid EMR system.

Extraordinary magnetoresistance (EMR) is a geometrical magnetoresistance effect discovered in 2000, where the change in electrical resistance upon the application of a large magnetic field can be greater than 1,000,000% at room temperature (orders of magnitude greater than other magnetoresistance effects such as GMR and CMR).[1] The effect occurs in semiconductor-metal hybrid systems when a transverse magnetic field is applied. Without a magnetic field the system is in a low-resistance state with most of the current flow directed through the metallic region. Upon the application of a large magnetic field the system switches to a state of much higher electrical resistance, due to the Hall angle approaching 90°, with the current flow inside the metallic region dramatically reduced. The effect is influenced greatly by the system geometry, with an enhancement of over four orders of magnitude shown to be possible with an alternative branched geometry.[2] Since the EMR effect occurs at room temperature and does not rely on magnetic materials it has many possible benefits for applications including in the read heads of future hard disk drives.[3]

YouTube Encyclopedic

  • 1/3
    Views:
    5 976
    589
    352
  • Mod-01 Lec-16 Applications of X-ray Photoelectron spectroscopy
  • Mod-01 Lec-10 Molecular Beam Epitaxy: Monolayers to Multilayers
  • Mod-01 Lec-34 Optoelectronic Materials I I- OLEDS

Transcription

References

  1. ^ Solin, S. A.; Thio, Tineke; Hines, D. R.; Heremans, J. J. (September 2000), "Enhanced Room-Temperature Geometric Magnetoresistance In Inhomogeneous Narrow-Gap Semiconductors" (PDF), Science, 289 (5484): 1530–2, Bibcode:2000Sci...289.1530S, doi:10.1126/science.289.5484.1530, PMID 10968784
  2. ^ Hewett, T.H.; Kusmartsev, F.V. (2010). "Geometrically enhanced extraordinary magnetoresistance in semiconductor–metal hybrids". Physical Review B. 82 (21): 212404. Bibcode:2010PhRvB..82u2404H. doi:10.1103/PhysRevB.82.212404. S2CID 59452735.
  3. ^ Solin, S.A. (July 2004). "Magnetic Field Nanosensors". Scientific American. 291 (1): 70–77. Bibcode:2004SciAm.291a..70S. doi:10.1038/scientificamerican0704-70. PMID 15255590.
This page was last edited on 10 July 2023, at 18:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.