To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Exergonic process

From Wikipedia, the free encyclopedia

An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process.[1] Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs free energy change is negative (∆G < 0). "Exergonic" (from the prefix exo-, derived for the Greek word ἔξω exō, "outside" and the suffix -ergonic, derived from the Greek word ἔργον ergon, "work") means "releasing energy in the form of work". In thermodynamics, work is defined as the energy moving from the system (the internal region) to the surroundings (the external region) during a given process.

All physical and chemical systems in the universe follow the second law of thermodynamics and proceed in a downhill, i.e., exergonic, direction. Thus, left to itself, any physical or chemical system will proceed, according to the second law of thermodynamics, in a direction that tends to lower the free energy of the system, and thus to expend energy in the form of work. These reactions occur spontaneously.

A chemical reaction is also exergonic when spontaneous. Thus in this type of reactions the Gibbs free energy decreases. The entropy is included in any change of the Gibbs free energy. This differs from an exothermic reaction or an endothermic reaction where the entropy is not included. The Gibbs free energy is calculated with the Gibbs–Helmholtz equation:

where:

T = temperature in kelvins (K)
ΔG = change in the Gibbs free energy
ΔS = change in entropy (at 298 K) as ΔS = Σ{S(Product)} − Σ{S(Reagent)}
ΔH = change in enthalpy (at 298 K) as ΔH = Σ{H(Product)} − Σ{H(Reagent)}

A chemical reaction progresses spontaneously only when the Gibbs free energy decreases, in that case the ΔG is negative. In exergonic reactions the ΔG is negative and in endergonic reactions the ΔG is positive:

exergon
endergon

where:

equals the change in the Gibbs free energy after completion of a chemical reaction.

YouTube Encyclopedic

  • 1/3
    Views:
    52 127
    33 418
    929
  • Endergonic, exergonic, exothermic, and endothermic reactions | Khan Academy
  • Exergonic and Endergonic Reactions
  • Exergonic and Endergonic Metabolic Pathways in Cells

Transcription

See also

References

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "exergonic (exoergic) reaction". doi:10.1351/goldbook.E02262
This page was last edited on 14 November 2021, at 10:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.