To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Estimating equations

From Wikipedia, the free encyclopedia

In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods --- the method of moments, least squares, and maximum likelihood --- as well as some recent methods like M-estimators.

The basis of the method is to have, or to find, a set of simultaneous equations involving both the sample data and the unknown model parameters which are to be solved in order to define the estimates of the parameters.[1] Various components of the equations are defined in terms of the set of observed data on which the estimates are to be based.

Important examples of estimating equations are the likelihood equations.

YouTube Encyclopedic

  • 1/5
    Views:
    3 856
    39 365
    2 832
    11 928
    15 406
  • ✪ What is GEE (Episode 27)
  • ✪ Generalized Estimating Equation (GEE) in SPSS
  • ✪ Solving Heterogeneous Estimating Equations Using Forest Based Algorithms
  • ✪ Introduction to Longitudinal Data Analysis
  • ✪ 03 01 Part 1 of 1 Generalized Linear Models

Transcription

Examples

Consider the problem of estimating the rate parameter, λ of the exponential distribution which has the probability density function:

Suppose that a sample of data is available from which either the sample mean, , or the sample median, m, can be calculated. Then an estimating equation based on the mean is

while the estimating equation based on the median is

Each of these equations is derived by equating a sample value (sample statistic) to a theoretical (population) value. In each case the sample statistic is a consistent estimator of the population value, and this provides an intuitive justification for this type of approach to estimation.

See also

References

  1. ^ Dodge, Y. (2003) Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9
  • V. P. Godambe, editor. Estimating functions, volume 7 of Oxford Statistical Science Series. The Clarendon Press Oxford University Press, New York, 1991.
  • Christopher C. Heyde. Quasi-likelihood and its application: A general approach to optimal parameter estimation. Springer Series in Statistics. Springer-Verlag, New York, 1997.
  • D. L. McLeish and Christopher G. Small. The theory and applications of statistical inference functions, volume 44 of Lecture Notes in Statistics. Springer-Verlag, New York, 1988.
  • Parimal Mukhopadhyay. An Introduction to Estimating Functions. Alpha Science International, Ltd, 2004.
  • Christopher G. Small and Jinfang Wang. Numerical methods for nonlinear estimating equations, volume 29 of Oxford Statistical Science Series. The Clarendon Press Oxford University Press, New York, 2003.
This page was last edited on 6 September 2018, at 04:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.