To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Equal incircles theorem

From Wikipedia, the free encyclopedia

If the blue circles are equal, the green circles are also equal.

In geometry, the equal incircles theorem derives from a Japanese Sangaku, and pertains to the following construction: a series of rays are drawn from a given point to a given line such that the inscribed circles of the triangles formed by adjacent rays and the base line are equal. In the illustration the equal blue circles define the spacing between the rays, as described.

The theorem states that the incircles of the triangles formed (starting from any given ray) by every other ray, every third ray, etc. and the base line are also equal. The case of every other ray is illustrated above by the green circles, which are all equal.

From the fact that the theorem does not depend on the angle of the initial ray, it can be seen that the theorem properly belongs to analysis, rather than geometry, and must relate to a continuous scaling function which defines the spacing of the rays. In fact, this function is the hyperbolic sine.

The theorem is a direct corollary of the following lemma:

Suppose that the nth ray makes an angle with the normal to the baseline. If is parameterized according to the equation, , then values of , where and are real constants, define a sequence of rays that satisfy the condition of equal incircles, and furthermore any sequence of rays satisfying the condition can be produced by suitable choice of the constants and .

YouTube Encyclopedic

  • 1/3
    Views:
    102 612
    185 947
    113 292
  • Incenter and incircles of a triangle | Geometry | Khan Academy
  • Angle bisector theorem proof | Special properties and parts of triangles | Geometry | Khan Academy
  • Part 1 of proof of Heron's formula | Perimeter, area, and volume | Geometry | Khan Academy

Transcription

Proof of the lemma

In the diagram, lines PS and PT are adjacent rays making angles and with line PR, which is perpendicular to the baseline, RST.

Line QXOY is parallel to the baseline and passes through O, the center of the incircle of PST, which is tangent to the rays at W and Z. Also, line PQ has length , and line QR has length , the radius of the incircle.

Then OWX is similar to PQX and OZY is similar to PQY, and from XY = XO + OY we get

This relation on a set of angles, , expresses the condition of equal incircles.

To prove the lemma, we set , which gives .

Using , we apply the addition rules for and , and verify that the equal incircles relation is satisfied by setting

This gives an expression for the parameter in terms of the geometric measures, and . With this definition of we then obtain an expression for the radii, , of the incircles formed by taking every Nth ray as the sides of the triangles

See also

References

This page was last edited on 2 March 2024, at 02:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.