To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

End node problem

From Wikipedia, the free encyclopedia

The end node problem arises when individual computers are used for sensitive work and/or temporarily become part of a trusted, well-managed network/cloud and then are used for more risky activities and/or join untrusted networks. (Individual computers on the periphery of networks/clouds are called end nodes.) End nodes often are not managed to the trusted network‘s high computer security standards.[1] End nodes often have weak/outdated software, weak security tools, excessive permissions, mis-configurations, questionable content and apps, and covert exploitations.[2] Cross contamination and unauthorized release of data from within a computer system becomes the problem.

Within the vast cyber-ecosystem, these end nodes often attach transiently to one or more clouds/networks, some trustworthy and others not. A few examples: a corporate desktop browsing the Internet, a corporate laptop checking company webmail via a coffee shop's open Wi-Fi access point, a personal computer used to telecommute during the day and gaming at night, or app within a smartphone/tablet (or any of the previous use/device combinations). Even if fully updated and tightly locked down, these nodes may ferry malware from one network (e.g. a corrupted webpage or an infected email message) into another, sensitive network. Likewise, the end nodes may exfiltrate sensitive data (e.g. log keystrokes or screen-capture). Assuming the device is fully trustworthy, the end node must provide the means to properly authenticate the user. Other nodes may impersonate trusted computers, thus requiring device authentication. The device and user may be trusted but within an untrustworthy environment (as determined by inboard sensors' feedback). Collectively, these risks are called the end node problem. There are several remedies but all require instilling trust in the end node and conveying that trust to the network/cloud.

YouTube Encyclopedic

  • 1/3
    Views:
    42 598
    98 848
    271 119
  • Transportation Problem - LP Formulation
  • Determine the Early Start (ES) and Early Finish (EF) of activities in a PDM network diagram
  • PERT - Project Management Techniques||with solved problem||Operations Research Tutorial

Transcription

The cloud’s weakest link

Cloud computing may be characterized as a vast, seemingly endless, array of processing and storage that one can rent from his or her computer. Recent media attention[when?] has focused on the security within the cloud.[3] Many believe the real risk does not lie within a well monitored, 24-7-365 managed, full redundancy cloud host but in the many questionable computers that access the cloud.[4][5] Many such clouds are FISMA-certified whereas the end nodes connecting to them rarely are configured to any standard.[citation needed]

Ever growing risk

From 2005 to 2009, the greatest and growing threats to personal and corporate data derived from exploits of users' personal computers. Organized cyber-criminals have found it more profitable to internally exploit the many weak personal and work computers than to attack through heavily fortified perimeters.[6] One common example is stealing small business's online banking account access.[7]

Solutions

To eliminate the end node problem, only allow authenticated users on trusted remote computers in safe environments to connect to your network/cloud. There are many ways to accomplish this with existing technology, each with different levels of trust.

Many companies issue typical laptops and only allow those specific computers to remotely connect. For example, the US Department of Defense only allows its remote computers to connect via VPN to its network (no direct Internet browsing) and uses two-factor authentication.[8] Some organizations use server-side tools to scan and/or validate the end node's computer[citation needed], such as communicating with the node's Trusted Platform Module (TPM).

A far higher level of trust can be obtained by issuing an immutable, tamper-resistant client[permanent dead link] with no local storage, allowing it to connect only after device and user authentication, remotely providing the OS and software (via PXE or Etherboot), and then only providing remote desktop or browser access to sensitive data.

A less expensive approach is to trust any hardware (corporate, government, personal, or public) but provide a known kernel and software and require strong authentication of the user. For example, the DoD’s Software Protection Initiative[9] offers Lightweight Portable Security, a LiveCD that boots only in RAM creating a pristine, non-persistent, end node while using Common Access Card software for authentication into DoD networks.

See also

References

  1. ^ Tim Fisher (12 December 2018). "What Is a Node in a Computer Network: Your computer and printer are both network nodes". Retrieved 24 December 2018.
  2. ^ Natalia Chrzanowska (23 March 2017). "Why to Use Node.js: Pros and Cons of Choosing Node.js for Back-end Development". Retrieved 24 December 2018.
  3. ^ "How Secure Is Cloud Computing?".
  4. ^ "Archived copy". Archived from the original on 2021-08-13. Retrieved 2014-01-07.{{cite web}}: CS1 maint: archived copy as title (link)
  5. ^ "VPN users: The weak link in network security?". Archived from the original on 2009-05-11. Retrieved 2010-02-06.
  6. ^ "Business Insights and Resources" (PDF).
  7. ^ "Cyberthieves stealing from large percentage of small businesses". USA Today. 9 March 2010.
  8. ^ "Fort Sill Virtual Private Network (VPN) Policy". Archived from the original on 2011-06-17. Retrieved 2010-02-06.
  9. ^ DoD Software Protection Initiative Archived 2010-05-13 at the Wayback Machine
This page was last edited on 18 March 2024, at 03:51
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.