To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Empirical distribution function

From Wikipedia, the free encyclopedia

The green curve, which asymptotically approaches heights of 0 and 1 without reaching them, is the true cumulative distribution function of the standard normal distribution. The grey hash marks represent the observations in a particular sample drawn from that distribution, and the horizontal steps of the blue step function (including the leftmost point in each step but not including the rightmost point) form the empirical distribution function of that sample. (Click here to load a new graph.)

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.

The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function.

YouTube Encyclopedic

  • 1/5
    69 389
    8 254
    241 010
    10 803
    229 589
  • ✪ Cumulative Distribution Function
  • ✪ CM Lecture 12 1 Empirical Probability
  • ✪ Calculating a Cumulative Distribution Function (CDF)
  • ✪ The empirical distribution is ... not empirical
  • ✪ Cumulative Distribution Function - Probability




Let (X1, …, Xn) be independent, identically distributed real random variables with the common cumulative distribution function F(t). Then the empirical distribution function is defined as[1][2]

where is the indicator of event A. For a fixed t, the indicator is a Bernoulli random variable with parameter p = F(t); hence is a binomial random variable with mean nF(t) and variance nF(t)(1 − F(t)). This implies that is an unbiased estimator for F(t).

However, in some textbooks, the definition is given as [3][4]

Small-sample properties

The mean of the empirical distribution is an unbiased estimator of the mean of the population distribution.

The variance of the empirical distribution times is an unbiased estimator of the variance of the population distribution.

Asymptotic properties

Since the ratio (n + 1)/n approaches 1 as n goes to infinity, the asymptotic properties of the two definitions that are given above are the same.

By the strong law of large numbers, the estimator converges to F(t) as n → ∞ almost surely, for every value of t:[1]

thus the estimator is consistent. This expression asserts the pointwise convergence of the empirical distribution function to the true cumulative distribution function. There is a stronger result, called the Glivenko–Cantelli theorem, which states that the convergence in fact happens uniformly over t:[5]

The sup-norm in this expression is called the Kolmogorov–Smirnov statistic for testing the goodness-of-fit between the empirical distribution and the assumed true cumulative distribution function F. Other norm functions may be reasonably used here instead of the sup-norm. For example, the L2-norm gives rise to the Cramér–von Mises statistic.

The asymptotic distribution can be further characterized in several different ways. First, the central limit theorem states that pointwise, has asymptotically normal distribution with the standard rate of convergence:[1]

This result is extended by the Donsker’s theorem, which asserts that the empirical process , viewed as a function indexed by , converges in distribution in the Skorokhod space to the mean-zero Gaussian process , where B is the standard Brownian bridge.[5] The covariance structure of this Gaussian process is

The uniform rate of convergence in Donsker’s theorem can be quantified by the result known as the Hungarian embedding:[6]

Alternatively, the rate of convergence of can also be quantified in terms of the asymptotic behavior of the sup-norm of this expression. Number of results exist in this venue, for example the Dvoretzky–Kiefer–Wolfowitz inequality provides bound on the tail probabilities of :[6]

In fact, Kolmogorov has shown that if the cumulative distribution function F is continuous, then the expression converges in distribution to , which has the Kolmogorov distribution that does not depend on the form of F.

Another result, which follows from the law of the iterated logarithm, is that [6]


See also


  1. ^ a b c van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press. p. 265. ISBN 0-521-78450-6.
  2. ^ PlanetMath Archived May 9, 2013, at the Wayback Machine
  3. ^ Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer, p. 36, Definition 2.4. ISBN 978-1-4471-3675-0.
  4. ^ Madsen, H.O., Krenk, S., Lind, S.C. (2006) Methods of Structural Safety. Dover Publications. p. 148-149. ISBN 0486445976
  5. ^ a b van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press. p. 266. ISBN 0-521-78450-6.
  6. ^ a b c van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press. p. 268. ISBN 0-521-78450-6.

Further reading

  • Shorack, G.R.; Wellner, J.A. (1986). Empirical Processes with Applications to Statistics. New York: Wiley. ISBN 0-471-86725-X.

External links

This page was last edited on 31 May 2019, at 23:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.