To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Relativistic heavy-ion collisions produce very large numbers of subatomic particles in all directions. In such collisions, flow refers to how energy, momentum, and number of these particles varies with direction,[1] and elliptic flow is a measure of how the flow is not uniform in all directions when viewed along the beam-line. Elliptic flow is strong evidence for the existence of quark–gluon plasma, and has been described as one of the most important observations measured at the Relativistic Heavy Ion Collider (RHIC).[2][3]

Elliptic flow describes the azimuthal momentum space anisotropy of particle emission from non-central heavy-ion collisions in the plane transverse to the beam direction, and is defined as the second harmonic coefficient of the azimuthal Fourier decomposition of the momentum distribution.[4] Elliptic flow is a fundamental observable since it directly reflects the initial spatial anisotropy, of the nuclear overlap region in the transverse plane, directly translated into the observed momentum distribution of identified particles. Since the spatial anisotropy is largest at the beginning of the evolution, elliptic flow is especially sensitive to the early stages of system evolution.[5] A measurement of elliptic flow thus provides access to the fundamental thermalization time scale and many more things in the early stages of a relativistic heavy-ion collision.[4]

Notes

  1. ^ Reisdorf, W.; Ritter, H. G. (1997). "Collective Flow in Heavy-Ion Collisions". Annual Review of Nuclear and Particle Science. 47: 663–709. Bibcode:1997ARNPS..47..663R. doi:10.1146/annurev.nucl.47.1.663.
  2. ^ Ollitrault, J. Y. (1992). "Anisotropy as a signature of transverse collective flow". Physical Review D. 46 (1): 229–245. Bibcode:1992PhRvD..46..229O. doi:10.1103/PhysRevD.46.229. PMID 10014754.
  3. ^ Voloshin, S.; Zhang, Y. (1996). "Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions". Zeitschrift für Physik C. 70 (4): 665–672. arXiv:hep-ph/9407282. doi:10.1007/s002880050141. S2CID 118925144.
  4. ^ a b Snellings, R. (2011). "Elliptic flow: A brief review". New Journal of Physics. 13 (5): 055008. arXiv:1102.3010. Bibcode:2011NJPh...13e5008S. doi:10.1088/1367-2630/13/5/055008. S2CID 119254339.
  5. ^ Ackermann, K.; Adams, N.; Adler, C.; Ahammed, Z.; Ahmad, S.; Allgower, C.; Amsbaugh, J.; Anderson, M.; Anderssen, E.; Arnesen, H.; Arnold, L.; Averichev, G.; Baldwin, A.; Balewski, J.; Barannikova, O.; Barnby, L.; Baudot, J.; Beddo, M.; Bekele, S.; Belaga, V.; Bellwied, R.; Bennett, S.; Bercovitz, J.; Berger, J.; Betts, W.; Bichsel, H.; Bieser, F.; Bland, L.; Bloomer, M.; et al. (2001). "Elliptic Flow in Au+Au Collisions at √sNN=130 GeV". Physical Review Letters. 86 (3): 402–407. arXiv:nucl-ex/0009011. Bibcode:2001PhRvL..86..402A. doi:10.1103/PhysRevLett.86.402. PMID 11177841.

References

This page was last edited on 30 April 2022, at 09:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.