To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Electron-refractive effect

From Wikipedia, the free encyclopedia

The electron-refractive effect, also known as electron induced permittivity modification (EIPM), is an electro-optic effect observed in some crystals and amorphous materials, such as chalcogenide glasses and oxides, where the permittivity reduces or increases when the material is illuminated by high energy electrons, typically from a transmission electron microscope or scanning electron microscope. The effect is non-linear and reversible.

The effect was observed by N. Normand and O. Normand.,[1] who observed that the permittivity, of chalcogenide glass increased by as much as 5% when irradiated with an electron gun in the 30 keV range; they also noticed that the change was accompanied by a change in the thickness of the film. Recently San-Roman-Alerigi, Anjum and Ooi, demonstrated that the permittivity of chalcogenide thin films could also be reduced by as much as 50% when the sample was illuminated by 300 keV electrons; moreover they also demonstrated that the electron induced permittivity modification was reversible[2]

Mechanism

The change in permittivity occurs because of the disruption in the atomic structure of the materials. That is, the changes are due to the breaking of bonds and re-bonding within the atomic structure of the amorphous or crystalline structures. This modification in turn modifies the carrier traps within the band structure, reducing them, and hence ensuing the decrement in the permittivity[1][2]

This contrasts with the photorefractive effect where the change is induced by the alteration in the electron distribution due to the photon-absorption. [3] [4] [5]

References

  1. ^ a b Nordman, Nina; Nordman, Olli (1 January 2001). "Refractive index change caused by electron irradiation in amorphous As–S and As–Se thin films coated with different metals". Journal of Applied Physics. 90 (5): 2206. Bibcode:2001JAP....90.2206N. doi:10.1063/1.1388862.
  2. ^ a b San-Román-Alerigi, Damián P.; Anjum, Dalaver H.; Zhang, Yaping; Yang, Xiaoming; Benslimane, Ahmed; Ng, Tien K.; Hedhili, Mohamed N.; Alsunaidi, Mohammad; Ooi, Boon S. (1 January 2013). "Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film". Journal of Applied Physics. 113 (4): 044116–044116–10. arXiv:1208.4542. Bibcode:2013JAP...113d4116S. doi:10.1063/1.4789602.
  3. ^ Tanaka, Keiji; Shimakawa, Koichi (1 August 2009). "Chalcogenide glasses in Japan: A review on photoinduced phenomena". Physica Status Solidi B. 246 (8): 1744–1757. Bibcode:2009PSSBR.246.1744T. doi:10.1002/pssb.200982002.
  4. ^ Eggleton, Benjamin (1 December 2011). "Chalcogenide photonics". Nature Photonics. 5 (12): 141–148. Bibcode:2011NaPho...5..141E. doi:10.1038/nphoton.2011.309.
  5. ^ Fritzsche, H. (1998). "Toward understanding the photoinduced changes in chalcogenide glasses". Semiconductors. 32 (8): 850–854. Bibcode:1998Semic..32..850F. doi:10.1134/1.1187471.
This page was last edited on 7 February 2023, at 08:32
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.