To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Electrodynamic wheel

From Wikipedia, the free encyclopedia

An electrodynamic wheel is a type of wheel proposed for use in electrodynamic levitation of the maglev train transport system.[1][2][3]

Unlike a conventional wheel, an electrodynamic wheel has a rim studded with magnets of alternating poles. As the wheel spins, which is done at a rate so that there is slip between the rim and the guideway's surface, magnetic fields are induced in the conductive guideway, which repels the wheel.

Depending on the spin, electrodynamic wheels can provide propulsion, braking, control, and lift.

YouTube Encyclopedic

  • 1/3
    Views:
    3 602 291
    45 472 971
    198 642
  • The Brilliant Engineering of Mecanum Wheels!
  • The Fastest train ever built | The complete physics of it
  • The Technology of Maglev Trains: Explained

Transcription

Using 2D model

The mechanical rotation of a radially positioned permanent-magnet Halbach array above a conducting, nonmagnetic track induces eddy currents in the track that can inductively create suspension and propulsion forces simultaneously. The parameters that affect the performance of this electrodynamic wheel are studied using a 2-D steady-state finite-element method.

Examples

The Hendo hoverboard uses electrodynamic wheels to levitate itself over a conductive surface.[4]

See also

References

  1. ^ Bird, J. "An Electrodynamic Wheel with a Split-Guideway Capable of Simultaneously Creating Suspension, Thrust and Guidance Forces" (PDF). University of Wisconsin-Madison. Retrieved 20 December 2012.
  2. ^ J, Bird. "A Study of the Effect of Using Electrodynamic Wheels in Series" (PDF). University of Wisconsin-Madison. Retrieved 20 December 2012.
  3. ^ Bird, J.; Lipo, T.A. (August 2007). "Characteristics of an Electrodynamic Wheel Using a 2-D Steady-State Model". IEEE Transactions on Magnetics. 43 (8): 3395–3405. Bibcode:2007ITM....43.3395B. doi:10.1109/TMAG.2007.900572. S2CID 22675786.
  4. ^ US 9148077, Henderson, D. Gregory, "Magnetic levitation of a stationary or moving object", published 2015-09-29, assigned to ARX PAX LLC 


This page was last edited on 25 July 2023, at 11:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.