To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Electrical efficiency

From Wikipedia, the free encyclopedia

The efficiency of a system in electronics and electrical engineering is defined as useful power output divided by the total electrical power consumed (a fractional expression), typically denoted by the Greek small letter eta (η – ήτα).

If energy output and input are expressed in the same units, efficiency is a dimensionless number. Where it is not customary or convenient to represent input and output energy in the same units, efficiency-like quantities have units associated with them. For example, the heat rate of a fossil fuel power plant may be expressed in BTU per kilowatt-hour. Luminous efficacy of a light source expresses the amount of visible light for a certain amount of power transfer and has the units of lumens per watt.

YouTube Encyclopedic

  • 1/3
    Views:
    444
    56 356
    13 117
  • Electrical Efficiency
  • Efficiency Calculation
  • Work, Power, and Efficiency: Sample Physics Problem

Transcription

Efficiency of typical electrical devices

Efficiency should not be confused with effectiveness: a system that wastes most of its input power but produces exactly what it is meant to is effective but not efficient. The term "efficiency" makes sense only in reference to the wanted effect. A light bulb, for example, might have 2% efficiency at emitting light yet still be 98% efficient at heating a room (In practice it is nearly 100% efficient at heating a room because the light energy will also be converted to heat eventually, apart from the small fraction that leaves through the windows). An electronic amplifier that delivers 10 watts of power to its load (e.g., a loudspeaker), while drawing 20 watts of power from a power source is 50% efficient. (10/20 × 100 = 50%)

Efficiency of devices at point of maximum power transfer

As a result of the maximum power theorem, devices transfer maximum power to a load when running at 50% electrical efficiency. This occurs when the load resistance (of the device in question) is equal to the internal Thevenin equivalent resistance of the power source. This is valid only for non-reactive source and load impedances.

Efficiency of light bulbs

Diagram of efficiency for various types of lamps

Discussion

High efficiency is particularly relevant in systems that can operate from batteries. Inefficiency may require weighing the cost either of the wasted energy, or of the required power supply, against the cost of attaining greater efficiency. Efficiency can usually be improved by choosing different components or by redesigning the system. Inefficiency probably produces extra heat within the system, which must be removed if it is to remain within its operating temperature range. In a climate-controlled environment, like a home or office, heat generated by appliances may reduce heating costs or increase air conditioning costs.

Impedance bridging connections have a load impedance much larger than the source, which helps transfer voltage signals at high electrical efficiency.

See also

References

External links

This page was last edited on 20 April 2024, at 17:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.