To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Electra (radio)

From Wikipedia, the free encyclopedia

Electra transceiver installed on the MAVEN orbiter, which was launched in November 2013

Electra, formally called the Electra Proximity Link Payload, is a telecommunications package that acts as a communications relay and navigation aid for Mars spacecraft and rovers.[1][2][3] The use of such a relay increases the amount of data that can be returned by two to three orders of magnitude.

The ultimate goal of Electra is to achieve a higher level of system integration, thus allowing significant mass, power, and size reductions, at lower cost, for a broad class of spacecraft.[4]

Overview

The Mars Global Surveyor, Mars Odyssey and Mars Express orbiters carry the first generation of UHF relay payloads. Building on this initial experience, NASA developed a next-generation relay payload, the Electra Proximity Link Payload, which flew for the first time on the 2005 Mars Reconnaissance Orbiter.[1]

Using Mars orbiters as radio relays to increase data return from rovers and other landers reduces the mass and power the surface spacecraft need for communications.[5] A special feature is that it can actively adjust the data rate during a communication session – slower when the orbiter is near the horizon from the surface robot's perspective, faster when it is overhead.[6] To build the relay network cost-effectively, NASA includes a relay communications payload on each of its science orbiters. Mars missions launched after 2005 make use of Electra UHF transceiver to provide for any navigation, command, and data-return needs these missions may have. The arriving spacecraft can receive these signals and determine its distance and speed in relation to Mars. This communication allows much more precise navigation.[2]

When NASA's landers and rovers land safely on Mars, Electra can provide precise Doppler data which, when combined with Mars Reconnaissance Orbiter's position information, can accurately determine the location of the lander or rover on the surface of Mars. Electra can also provide UHF coverage to Mars landers and rovers on the surface using its nadir-pointed (pointed straight down at the surface) antenna. This coverage would be important to landed crafts on Mars that might not have sufficient radio power to communicate directly with Earth by themselves.[1]

Key features

Deployments

Predecessor

See also

References

  1. ^ a b c "MRO Spacecraft and Instruments: Electra". NASA. 22 November 2007. Archived from the original on 13 February 2022. Retrieved 14 November 2013.
  2. ^ a b c Schier, Jim; Edwards, Chad (8 July 2009). "NASA's Mars Telecommunications: Evolving to Meet Robotic and Human Mission Needs" (PDF). NASA. Retrieved 14 November 2013.
  3. ^ a b c d e f g Edwards, Jr., Charles D.; Jedrey, Thomas C.; Schwartzbaum, Eric; Devereaux, Ann S.; DePaula, Ramon; Dapore, Mark (2003). The Electra Proximity Link Payload for Mars Relay Telecommunications and Navigation. 54th International Astronautical Congress. 29 September-3 October 2003. Bremen, German. CiteSeerX 10.1.1.455.220. doi:10.2514/6.IAC-03-Q.3.a.06.
  4. ^ Satorius, Edgar; Jedrey, Tom; Bell, David; Devereaux, Ann; Ely, Todd; et al. (2006). "The Electra Radio" (PDF). In Hamkins, Jon; Simon, Marvin K. (eds.). Autonomous Software-Defined Radio Receivers for Deep Space Applications. Deep Space Communications and Navigation Series. NASA/Jet Propulsion Laboratory. Bibcode:2006asdr.book.....H. Archived from the original (PDF) on 3 October 2006.
  5. ^ Webster, Guy (17 November 2006). "NASA's Newest Mars Orbiter Passes Communications Relay Test". NASA. Retrieved 14 November 2013.
  6. ^ "NASA Electra Radio for the Trace Gas Orbiter". European Space Agency. 2 July 2014.
  7. ^ Mortensen, Dale J.; Bishop, Daniel W.; Chelmins, David T. (2012). Space Software Defined Radio Characterization to Enable Reuse (PDF). 30th AIAA International Communications Satellite Systems Conference. 24–27 September 2012. Ottawa, Canada. doi:10.2514/6.2012-15124. hdl:2060/20120015492. Archived from the original (PDF) on 27 December 2016. Retrieved 24 October 2016.
  8. ^ Webster, Guy (2 July 2014). "NASA Radio Delivered for Europe's 2016 Mars Orbiter". NASA/JPL. Retrieved 22 April 2018.
  9. ^ Ormston, Thomas (18 October 2016). "Listening to an Alien Landing". European Space agency.
  10. ^ Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew; Bhandari, Pradeep (2015). Preliminary Surface Thermal Design of the Mars 2020 Rover (PDF). 45th International Conference on Environmental Systems. 12–16 July 2015. Bellevue, Washington.

Further reading

This page was last edited on 2 March 2024, at 01:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.