To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Elastic instability

From Wikipedia, the free encyclopedia

Elastic instability of a rigid beam supported by an angular spring.

Elastic instability is a form of instability occurring in elastic systems, such as buckling of beams and plates subject to large compressive loads.

There are a lot of ways to study this kind of instability. One of them is to use the method of incremental deformations based on superposing a small perturbation on an equilibrium solution.

YouTube Encyclopedic

  • 1/5
    Views:
    5 211
    4 952
    3 801
    10 252
    7 597
  • Mod-07 Lec-38 Analysis of elastic instability and second-order effects
  • Mod-07 Lec-40 Analysis of elastic instability and second-order effects
  • Mod-07 Lec-39 Analysis of elastic instability and second-order effects
  • Mod-01 Lec-01 Instability and Transition of Fluid Flows
  • UNSW - Aerospace Structures - Buckling of Columns and Shells

Transcription

Single degree of freedom-systems

Consider as a simple example a rigid beam of length L, hinged in one end and free in the other, and having an angular spring attached to the hinged end. The beam is loaded in the free end by a force F acting in the compressive axial direction of the beam, see the figure to the right.

Moment equilibrium condition

Assuming a clockwise angular deflection , the clockwise moment exerted by the force becomes . The moment equilibrium equation is given by

where is the spring constant of the angular spring (Nm/radian). Assuming is small enough, implementing the Taylor expansion of the sine function and keeping the two first terms yields

which has three solutions, the trivial , and

which is imaginary (i.e. not physical) for and real otherwise. This implies that for small compressive forces, the only equilibrium state is given by , while if the force exceeds the value there is suddenly another mode of deformation possible.

Energy method

The same result can be obtained by considering energy relations. The energy stored in the angular spring is

and the work done by the force is simply the force multiplied by the vertical displacement of the beam end, which is . Thus,

The energy equilibrium condition now yields as before (besides from the trivial ).

Stability of the solutions

Any solution is stable iff a small change in the deformation angle results in a reaction moment trying to restore the original angle of deformation. The net clockwise moment acting on the beam is

An infinitesimal clockwise change of the deformation angle results in a moment

which can be rewritten as

since due to the moment equilibrium condition. Now, a solution is stable iff a clockwise change results in a negative change of moment and vice versa. Thus, the condition for stability becomes

The solution is stable only for , which is expected. By expanding the cosine term in the equation, the approximate stability condition is obtained:

for , which the two other solutions satisfy. Hence, these solutions are stable.

Multiple degrees of freedom-systems

Elastic instability, 2 degrees of freedom

By attaching another rigid beam to the original system by means of an angular spring a two degrees of freedom-system is obtained. Assume for simplicity that the beam lengths and angular springs are equal. The equilibrium conditions become

where and are the angles of the two beams. Linearizing by assuming these angles are small yields

The non-trivial solutions to the system is obtained by finding the roots of the determinant of the system matrix, i.e. for

Thus, for the two degrees of freedom-system there are two critical values for the applied force F. These correspond to two different modes of deformation which can be computed from the nullspace of the system matrix. Dividing the equations by yields

For the lower critical force the ratio is positive and the two beams deflect in the same direction while for the higher force they form a "banana" shape. These two states of deformation represent the buckling mode shapes of the system.

See also

Further reading

This page was last edited on 9 May 2021, at 02:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.