To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Ecclesiastical full moon

From Wikipedia, the free encyclopedia

An ecclesiastical full moon is formally the 14th day of the ecclesiastical lunar month (an ecclesiastical moon) in an ecclesiastical lunar calendar. The ecclesiastical lunar calendar spans the year with lunar months of 30 and 29 days which are intended to approximate the observed phases of the Moon. Since a true synodic month has a length that can vary from about 29.27 to 29.83 days, the moment of astronomical opposition tends to be roughly 14.75 days after the previous conjunction of the Sun and Moon (the new moon). The ecclesiastical full moons of the Gregorian lunar calendar tend to agree with the dates of astronomical opposition, referred to a day beginning at midnight at 0 degrees longitude, to within a day or so. However, the astronomical opposition happens at a single moment for the entire Earth: The hour and day at which the opposition is measured as having taken place will vary with longitude. In the ecclesiastical calendar, the 14th day of the lunar month, reckoned in local time, is considered the day of the full moon at each longitude.

Schematic lunar calendars can and do get out of step with the Moon. A useful way of checking their performance is to compare the variation of the astronomical new moon with a standard time of 6 a.m. on the last day of a 30-day month and 6 p.m. (end of day) on the last day of a 29-day month.

Beginning in the medieval period the age of the ecclesiastical moon was announced daily in the office of Prime at the reading of the martyrology. This is still done today by those using the extraordinary form of the Roman Rite adhering to the 1962 Roman Breviary. [1]

In the Book of Common Prayer of the Protestant Episcopal Church of the United States of America, the dates of the paschal full moons for the 19 years of the Gregorian Easter cycle are indicated by the placement of the Golden Number to the left of the date in March or April on which the paschal full moon falls in that year of the cycle.[2] The same practice is followed in some editions of the Book of Common Prayer of the Church of England.

YouTube Encyclopedic

  • 1/5
    Views:
    3 071 144
    319
    4 110
    36 991
    1 485
  • Moon Phases: Crash Course Astronomy #4
  • Paschal Full Moon 2010
  • Pink Moon Rising - Don't Miss Out April's Stunning Full Moon
  • How is the Date of Easter Determined?
  • It's Time to Move Forward! FULL MOON April 2023 | Urgent Message from SIRIUS

Transcription

Besides the Sun, the Moon is the most obvious object in the sky. Bright, silvery, with tantalizing features on its face, it’s been the target of imagination, poetry, science, and even the occasional rocket. If you pay even the most cursory attention to it, you’ll see that it changes every day; sometimes it’s up in the day, sometimes at night, and its shape is always changing. What causes this behavior? The Moon is basically a giant ball of rock 3500 kilometers across hanging in space. Its surface is actually pretty dark, with about the same reflectivity as a chalkboard or asphalt. However, it looks bright to us because it’s sitting in full sunlight; the Sun illuminates it, and it reflects that light down to us here on Earth. And because it’s a sphere, and orbiting the Earth, the way we see it lit by the Sun changes with time. That’s what causes its phases: geometry. The important thing to remember through all this is, because the Moon is a ball and in space, half of it is always illuminated by the Sun! This is true for the Earth, too, and every spherical object in space; half faces the Sun, half faces away. We call the part facing the Sun the daylight or bright side, and the half facing away the night or dark side. The phase of the Moon refers to what shape the Moon appears to us; how much of it we see illuminated from the Earth. The key to all this is this line, dividing the lit day side from the unlit night side. We call that line the terminator. If you’re facing the moon, with the sun behind you, you’re seeing the half of the moon that is fully illuminated by sunlight and it looks full. If you’re off to the side you see half of the lit side and half of the dark side and we say the moon is half full. If the sun is on the other side of the moon, you’re look at the unlit half, and it looks dark. Now, mind you, I haven’t moved anything except our point of view here, so at all times the Moon is always half lit, and half dark. Remember that. The phase of the Moon we see depends on from what direction the sunlight’s hitting it, and the angle we see that from Earth. The Moon orbits the Earth roughly once per month. In fact, that’s where the word “month” comes from; “month” and “Moon” are cognates, words that have similar etymological histories, and in most languages, including English, the two words are very similar. The length of time we call the month is derived from the length of time it takes the Moon to go through all its phases -- 29.5 days. So. To describe the phases, let’s start at the beginning: New Moon. New Moon happens when the Sun, Moon, and Earth are all more or less in a line. The Moon’s orbit is actually tipped a bit to the Earth’s, so sometimes new Moon happens when the Moon is “below” the Sun, or “above” it. But at some point in its orbit, at some point in the month, it appears to be as close to the Sun as it can. What does this look like from Earth? The Moon is between the Earth and the Sun, so from our perspective we only see the dark half, the unilluminated half, of the Moon. The other side, the far side, of the Moon is lit, but we can’t see it. It makes sense then to call this the beginning of the Moon’s cycle, hence the term “New Moon”. Now think about this for a sec: Because the Moon is near the Sun in the sky, it travels across the sky with the Sun. It’s up during the day! You can only see it from the part of the Earth that’s lit, which is when it’s daytime. It’s a very common misconception that the Moon is only up at night, but it’s up during the day literally just as often. At New Moon, the Moon stays near the Sun, so it rises at sunrise, and sets at sunset. This makes it extremely difficult to see; it is, after all, sitting next to the brightest object in the sky, and only a little bit of it is lit from our perspective. But not for long. Because the Moon is orbiting the Earth, after a couple of days it’s moved a bit to the east. Now we’re seeing it along a slight angle, and we can see a little bit of the illuminated half of the Moon on its side toward the Sun. The terminator, the day/night line, appears curved around the Moon, so what we see is a thin illuminated crescent Moon. At this point the crescent is still very thin, with the horns of the crescent pointing away from the Sun. Note that the Moon is still pretty close to the Sun in the sky, just a bit to the east, rising maybe an hour or two after sunrise. But this means it’s up all day, and then sets after the Sun does. This is the best time to see the crescent Moon, when the Sun has already set and the sky starts to get dark. The Moon will be low over the western horizon, and it will set soon after the Sun does. Let’s wait a couple of days. OK, now the Moon has moved a bit more in its orbit around the Earth, and is farther from the Sun in the sky. We see a little more of the illuminated part, and the crescent is wider. Since it’s getting thicker, we say this is a “waxing crescent” Moon; waxing means growing or getting bigger. It’s also well away from the Sun now, so it’s easier to spot, even during the day before sunset. Seven or so days after new Moon we get to our first milestone: the Moon is now one-quarter of the way around its orbit. It’s 90° away from the Sun in the sky, which means we’re looking straight down on the terminator, the Moon’s day/night line. It cuts right down the middle of the visible face of the Moon, so it’s half lit, with the sunward side of the Moon visible and the other side dark. Confusingly, this phase is properly named “first quarter” because the Moon is ¼ of the way through its cycle, ¼ of the way through its orbit around the Earth, even though it looks half full. So it’s not really the half-full moon -- astronomers prefer “first quarter,” so if you want to sound all astronomery, then you should call it that. But time marches on. The Moon continues on its gravitational dance with Earth, swinging around its orbit. Now more than half full, we say its shape is “gibbous”, which means swollen or convex. Since it’s getting wider, this is actually the waxing gibbous phase of the Moon. It rises in the late afternoon, and is up most of the night. Our next big step comes two weeks after new Moon, when it’s moved halfway through its orbit. It is now opposite the Sun in the sky, 180° around. The Earth is between the Moon and Sun, so we’re looking at the fully-illuminated half of the Moon. This is the full Moon. Because it’s opposite the Sun, it rises at sunset and sets and sunrise; it’s up all night shining down on the Earth. But again, wait a couple of days and things change. When the Moon is full it’s 180° around the sky from the Sun, so as it continues to move around the Earth in a circle the distance between it and the Sun is now starting to decrease, even as it continues on in the same direction. As before, it keeps rising and setting later, but now it rises after sunset, and sets after sunrise. If you get up early in the morning as the Sun is just rising in the east, you’ll see the nearly-but-not-quite full Moon setting in the west. Not only that, but we’re about to go through all the phases again, but in reverse order. A few days after full Moon the lit side is shrinking. It’s in the waning, or shrinking, gibbous phase. Then, three weeks or so after new Moon, and a week after full, the Moon is once again half lit, the terminator splitting the Moon’s face in two even halves. This is the “third quarter” Moon, because the Moon is ¾ of the way through its cycle. It’s a lot like the first quarter, but the side that was lit is now dark, and vice versa. It’s 270° around the sky from the Sun. It rises at midnight and sets at noon. A few days later and the Moon is a crescent again, getting thinner. It’s now a “waning crescent.” It rises just a couple of hours before sunrise, and sets a couple of hours before sunset. Then, finally, we’re back where we started. One month after new Moon, the Moon has traveled 360° around the sky, and is once again as close to the Sun as it can get. It’s new Moon, and the cycle starts up again as it has for time immemorial. An interesting thing happens if you move your perspective from the Earth to the Moon. The phases of the Moon we see from Earth depend on the angle of the Moon and Sun in the sky. But on the Moon, the angles are exactly 180° reversed; at new Moon, when the Moon is between the Earth and Sun, the Earth is opposite the Sun as seen from the Moon. It’s full Earth! All the other phases are opposite too, so when we see a full Moon, a Moon-dweller would see a new Earth, and so on. Have you ever looked at the thin crescent Moon and seen the ghostly face of the rest of the unlit side? That’s because it’s not really unlit: the nearly full Earth is reflecting sunlight on the Moon, lighting up the otherwise dark part. The Earth is bigger and more reflective than the Moon, so it’s actually 50 times brighter than a full Moon! This glow is called Earthshine, a term I quite like. Even more poetically, it’s been called “the old Moon in the new Moon’s arms”, referring to the unlit part surrounded by the crescent new Moon’s horns. That’s lovely, isn’t it? The Moon is one of the most beautiful and most gratifying objects in the sky to observe. It’s different every day! Yet it’s also the same, because we see, more or less, the same half of it, the same face all the time. It’s big and bright, and the features on its surface discernible by eye (and even better with binoculars or a small telescope). As the phases change, inexorably, day after day, the angle of sunlight hitting the surface changes, bringing new things into our view. The motions become comforting, even familiar. It’s a reminder that the Universe may seem strange and complicated and forbidding at first, but over time, as you get outside and experience it, it becomes your neighborhood. Welcome home. Today you learned why the Moon has phases: It’s a sphere, and it orbits the Earth, so the angle at which we see its lit side changes. It goes from new, to waxing crescent, to half full, waxing gibbous, full, waning gibbous, half full, waning crescent, and then the cycle starts all over again. This also affects when it rises and sets, and what we see on the surface. Crash Course is produced in association with PBS Digital Studios. This episode was written by me, Phil Plait. The script was edited by Blake de Pastino, and our consultant is Dr. Michelle Thaller. It was co-directed by Nicholas Jenkins and Michael Aranda, and the graphics team is Thought Café.

Paschal full moon

The paschal full moon is the ecclesiastical full moon of the northern spring and is used in the determination of the date of Easter. The name "paschal" is derived from "Pascha", a transliteration of the Aramaic word meaning Passover. The date of Easter is determined as the first Sunday after the "paschal full moon" that falls on or after March 21. (March 21 is the ecclesiastical equinox, the date fixed by the Gregorian reform of the calendar as a fixed reference date for the Spring Equinox in the Northern hemisphere; the actual Equinox can fall on March 19, 20 or 21). This "full moon" does not currently correspond directly to any astronomical event, but is instead the 14th day of a lunar month, determined from tables. It may differ from the date of the actual full moon by up to two days.[3][better source needed]

The calculations to determine the date of the paschal full moon can be described as follows:

  • Nineteen civil calendar years are divided into 235 lunar months of 30 and 29 days each.
  • This period of 19 years (the metonic cycle) is used because it produces a set of civil calendar dates for the ecclesiastical moons that repeats every nineteen years while still providing a reasonable approximation to the astronomical facts.
  • The first day of each of these lunar months is the ecclesiastical new moon. Exactly one ecclesiastical new moon in each year falls on a date between March 8 and April 5, both inclusive. This begins the paschal lunar month for that year, and thirteen days later (that is, between March 21 and April 18, both inclusive) is the paschal full moon.
  • Easter is the Sunday following the paschal full moon.

In other words, Easter falls from one to seven days after the paschal full moon, so that if the paschal full moon is on Sunday, Easter is the following Sunday. Thus the earliest possible date of Easter is March 22, while the latest possible date is April 25.

Earliest Easter

In 1818, as a paschal full moon fell on Saturday March 21 (the ecclesiastical fixed date for the Equinox), Easter was the following day—Sunday March 22—the earliest date possible. It will not fall on this date again until 2285, a span of 467 years.[4]

Latest Easter

In 1943 a full moon fell on Saturday March 20. As this was before March 21, the next full moon, which fell on Sunday April 18, determined the date of Easter—the following Sunday, April 25. It will not fall on this date again until 2038, a span of 95 years.[5]

For a detailed discussion of the paschal computations, see Date of Easter (the Computus).

Easter tables

By the middle of the third century AD computists of some churches, among which were the Church of Rome and the one of Alexandria, had begun to calculate their own periodic sequences of dates of paschal full moon, to be able to determine their own dates of Easter Sunday.[6] The motivation for these experiments was a dissatisfaction with the Jewish calendars that Christians had hitherto relied on to fix the date of Easter. These Jewish calendars, according to their Christian critics, sometimes placed Nisan 14, the paschal full moon and the day of preparation for the Jewish Passover, before the spring equinox (see Easter). The Christians who began the experiments with independent computations held that the paschal full moon should never precede the equinox.

The computational principles developed at Alexandria eventually became normative, but their reception was a centuries-long process during which Alexandrian Easter tables competed with other tables incorporating different arithmetical parameters. So for a period of several centuries the sequences of dates of the paschal full moon applied by different churches could show great differences (see Easter controversy).

See also

References

  1. ^ At medieval Exeter Cathedral, it was the next day's date and age of the Moon that were announced. Et omnibus in locis suis sedentibus sit ibi quidam puer...paratus ad legendum leccionem de Martilogio, absque Iube domine, sed pronunciondo primo loco numerum Nonarum, Iduum, Kalendarum, et etatem lune qualis erit in crastino... (And when all are sitting in their places let a boy be there ready to read the Martyrology beginning with Iube domine, but first saying the number of Nones, Ides, Kalends, and what the age of the moon will be on the morrow...) J. N. Dalton, ed., Ordinale Exon. vol. 1, Henry Bradshaw Society, London, 1909, p. 37.
  2. ^ The Book of Common Prayer according to the use of The Episcopal Church, Seabury Press, New York, pp. 21-22.
  3. ^ Montes, Marcos J. "Calculation of the Ecclesiastical Calendar". Archived from the original on November 3, 2008. Retrieved 2008-01-12.
  4. ^ "Easter Dating Method - Calculate the Date of Easter Sunday". www.assa.org.au. Retrieved 2022-09-29.
  5. ^ Bureau, US Census. "Easter Dates from 1600 to 2099". Census.gov. Retrieved 2022-09-29.
  6. ^ Georges Declercq, Anno Domini: The origins of the Christian era (Brepols, Turnhout, Belgium, 2000)
This page was last edited on 7 March 2024, at 00:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.