To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Eberlein–Šmulian theorem

From Wikipedia, the free encyclopedia

In the mathematical field of functional analysis, the Eberlein–Šmulian theorem (named after William Frederick Eberlein and Witold Lwowitsch Schmulian) is a result that relates three different kinds of weak compactness in a Banach space.

YouTube Encyclopedic

  • 1/5
    Views:
    19 610
    5 902
    405
    3 290
    323
  • Functional Analysis - Part 25 - Hahn–Banach theorem
  • Lecture 25 - The Weak-* Topology and the Banach-Alaoglu Theorem
  • 7.1 - Exercises
  • Doctorate program: Functional Analysis - Lecture 34: Eigenvalues of compact symmetric operators
  • Teaching Project Work &Mathematical ComputationFor Grades XI & XII part (I)

Transcription

Statement

Eberlein–Šmulian theorem: [1] If X is a Banach space and A is a subset of X, then the following statements are equivalent:

  1. each sequence of elements of A has a subsequence that is weakly convergent in X
  2. each sequence of elements of A has a weak cluster point in X
  3. the weak closure of A is weakly compact.

A set A (in any topological space) can be compact in three different ways:

The Eberlein–Šmulian theorem states that the three are equivalent on a weak topology of a Banach space. While this equivalence is true in general for a metric space, the weak topology is not metrizable in infinite dimensional vector spaces, and so the Eberlein–Šmulian theorem is needed.

Applications

The Eberlein–Šmulian theorem is important in the theory of PDEs, and particularly in Sobolev spaces. Many Sobolev spaces are reflexive Banach spaces and therefore bounded subsets are weakly precompact by Alaoglu's theorem. Thus the theorem implies that bounded subsets are weakly sequentially precompact, and therefore from every bounded sequence of elements of that space it is possible to extract a subsequence which is weakly converging in the space. Since many PDEs only have solutions in the weak sense, this theorem is an important step in deciding which spaces of weak solutions to use in solving a PDE.

See also

References

  1. ^ Conway 1990, p. 163.

Bibliography

  • Conway, John B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics. Vol. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
  • Diestel, Joseph (1984), Sequences and series in Banach spaces, Springer-Verlag, ISBN 0-387-90859-5.
  • Dunford, N.; Schwartz, J.T. (1958), Linear operators, Part I, Wiley-Interscience.
  • Whitley, R.J. (1967), "An elementary proof of the Eberlein-Smulian theorem", Mathematische Annalen, 172 (2): 116–118, doi:10.1007/BF01350091, S2CID 123175660.
This page was last edited on 7 December 2023, at 12:11
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.