To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

En (Lie algebra)

From Wikipedia, the free encyclopedia

Dynkin diagrams
Finite
E3=A2A1
E4=A4
E5=D5
E6
E7
E8
Affine (Extended)
E9 or E(1)
8
or E+
8
Hyperbolic (Over-extended)
E10 or E(1)^
8
or E++
8
Lorentzian (Very-extended)
E11 or E+++
8
Kac–Moody
E12 or E++++
8
...

In mathematics, especially in Lie theory, En is the Kac–Moody algebra whose Dynkin diagram is a bifurcating graph with three branches of length 1, 2 and k, with k = n − 4.

In some older books and papers, E2 and E4 are used as names for G2 and F4.

YouTube Encyclopedic

  • 1/5
    Views:
    48 276
    28 559
    29 058
    9 983
    8 626
  • Lie Groups and Lie Algebras | Lecture 1
  • L1. Lie Algebra
  • Lie groups and their Lie algebras - Lec 13 - Frederic Schuller
  • Rotations, SO(3) and so(3)
  • Lie Groups and Lie Algebras | Lecture 3

Transcription

Finite-dimensional Lie algebras

The En group is similar to the An group, except the nth node is connected to the 3rd node. So the Cartan matrix appears similar, −1 above and below the diagonal, except for the last row and column, have −1 in the third row and column. The determinant of the Cartan matrix for En is 9 − n.

  • E3 is another name for the Lie algebra A1A2 of dimension 11, with Cartan determinant 6.
  • E4 is another name for the Lie algebra A4 of dimension 24, with Cartan determinant 5.
  • E5 is another name for the Lie algebra D5 of dimension 45, with Cartan determinant 4.
  • E6 is the exceptional Lie algebra of dimension 78, with Cartan determinant 3.
  • E7 is the exceptional Lie algebra of dimension 133, with Cartan determinant 2.
  • E8 is the exceptional Lie algebra of dimension 248, with Cartan determinant 1.

Infinite-dimensional Lie algebras

  • E9 is another name for the infinite-dimensional affine Lie algebra 8 (also as E+
    8
    or E(1)
    8
    as a (one-node) extended E8) (or E8 lattice) corresponding to the Lie algebra of type E8. E9 has a Cartan matrix with determinant 0.
  • E10 (or E++
    8
    or E(1)^
    8
    as a (two-node) over-extended E8) is an infinite-dimensional Kac–Moody algebra whose root lattice is the even Lorentzian unimodular lattice II9,1 of dimension 10. Some of its root multiplicities have been calculated; for small roots the multiplicities seem to be well behaved, but for larger roots the observed patterns break down. E10 has a Cartan matrix with determinant −1:
  • E11 (or E+++
    8
    as a (three-node) very-extended E8) is a Lorentzian algebra, containing one time-like imaginary dimension, that has been conjectured to generate the symmetry "group" of M-theory.
  • En for n ≥ 12 is a family of infinite-dimensional Kac–Moody algebras that are not well studied.

Root lattice

The root lattice of En has determinant 9 − n, and can be constructed as the lattice of vectors in the unimodular Lorentzian lattice Zn,1 that are orthogonal to the vector (1,1,1,1,...,1|3) of norm n × 12 − 32 = n − 9.

E7+12

Landsberg and Manivel extended the definition of En for integer n to include the case n = 7+12. They did this in order to fill the "hole" in dimension formulae for representations of the En series which was observed by Cvitanovic, Deligne, Cohen and de Man. E7+12 has dimension 190, but is not a simple Lie algebra: it contains a 57 dimensional Heisenberg algebra as its nilradical.

See also

  • k21, 2k1, 1k2 polytopes based on En Lie algebras.

References

  • Kac, Victor G; Moody, R. V.; Wakimoto, M. (1988). "On E10". Differential geometrical methods in theoretical physics (Como, 1987). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Vol. 250. Dordrecht: Kluwer Academic Publishers Group. pp. 109–128. MR 0981374.

Further reading

This page was last edited on 7 April 2024, at 22:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.