To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Doob–Dynkin lemma

From Wikipedia, the free encyclopedia

In probability theory, the Doob–Dynkin lemma, named after Joseph L. Doob and Eugene Dynkin (also known as the factorization lemma), characterizes the situation when one random variable is a function of another by the inclusion of the -algebras generated by the random variables. The usual statement of the lemma is formulated in terms of one random variable being measurable with respect to the -algebra generated by the other.

The lemma plays an important role in the conditional expectation in probability theory, where it allows replacement of the conditioning on a random variable by conditioning on the -algebra that is generated by the random variable.

Notations and introductory remarks

In the lemma below, is the -algebra of Borel sets on If and is a measurable space, then

is the smallest -algebra on such that is -measurable.

Statement of the lemma

Let be a function, and a measurable space. A function is -measurable if and only if for some -measurable [1]

Remark. The "if" part simply states that the composition of two measurable functions is measurable. The "only if" part is proven below.

Remark. The lemma remains valid if the space is replaced with where is bijective with and the bijection is measurable in both directions.

By definition, the measurability of means that for every Borel set Therefore and the lemma may be restated as follows.

Lemma. Let and is a measurable space. Then for some -measurable if and only if .

See also

References

  1. ^ Kallenberg, Olav (1997). Foundations of Modern Probability. Springer. p. 7. ISBN 0-387-94957-7.
  • A. Bobrowski: Functional analysis for probability and stochastic processes: an introduction, Cambridge University Press (2005), ISBN 0-521-83166-0
  • M. M. Rao, R. J. Swift : Probability Theory with Applications, Mathematics and Its Applications, vol. 582, Springer-Verlag (2006), ISBN 0-387-27730-7 doi:10.1007/0-387-27731-5
This page was last edited on 5 December 2023, at 15:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.