The dynamic lotsize model in inventory theory, is a generalization of the economic order quantity model that takes into account that demand for the product varies over time. The model was introduced by Harvey M. Wagner and Thomson M. Whitin in 1958.^{[1]}^{[2]}
YouTube Encyclopedic

1/3Views:2 71610 21410 067

✪ Managerial Economics: Optimal Lot Size (Inventory Holdings)

✪ Mod05 Lec17 Lot sizing

✪ Mod05 Lec18 Lot sizing  heuristics
Transcription
Contents
Problem setup
We have available a forecast of product demand d_{t} over a relevant time horizon t=1,2,...,N (for example we might know how many widgets will be needed each week for the next 52 weeks). There is a setup cost s_{t} incurred for each order and there is an inventory holding cost i_{t} per item per period (s_{t} and i_{t} can also vary with time if desired). The problem is how many units x_{t} to order now to minimize the sum of setup cost and inventory cost. Let me denote inventory:
The functional equation representing minimal cost policy is:
Where H() is the Heaviside step function. Wagner and Whitin^{[1]} proved the following four theorems:
 There exists an optimal program such that Ix_{t}=0; ∀t
 There exists an optimal program such that ∀t: either x_{t}=0 or for some k (t≤k≤N)
 There exists an optimal program such that if d_{t*} is satisfied by some x_{t**}, t**<t*, then d_{t}, t=t**+1,...,t*1, is also satisfied by x_{t**}
 Given that I = 0 for period t, it is optimal to consider periods 1 through t  1 by themselves
Planning Horizon Theorem
The precedent theorems are used in the proof of the Planning Horizon Theorem.^{[1]} Let
denote the minimal cost program for periods 1 to t. If at period t* the minimum in F(t) occurs for j = t** ≤ t*, then in periods t > t* it is sufficient to consider only t** ≤ j ≤ t. In particular, if t* = t**, then it is sufficient to consider programs such that x_{t*} > 0.
The algorithm
Wagner and Whitin gave an algorithm for finding the optimal solution by dynamic programming.^{[1]} Start with t*=1:
 Consider the policies of ordering at period t**, t** = 1, 2, ... , t*, and filling demands d_{t} , t = t**, t** + 1, ... , t*, by this order
 Add H(x_{t**})s_{t**}+i_{t**}I_{t**} to the costs of acting optimally for periods 1 to t**1 determined in the previous iteration of the algorithm
 From these t* alternatives, select the minimum cost policy for periods 1 through t*
 Proceed to period t*+1 (or stop if t*=N)
Because this method was perceived by some as too complex, a number of authors also developed approximate heuristics (e.g., the SilverMeal heuristic^{[3]}) for the problem.
See also
 Infinite fill rate for the part being produced: Economic order quantity
 Constant fill rate for the part being produced: Economic production quantity
 Demand is random: classical Newsvendor model
 Several products produced on the same machine: Economic lot scheduling problem
 Reorder point
References
 ^ ^{a} ^{b} ^{c} ^{d} Harvey M. Wagner and Thomson M. Whitin, "Dynamic version of the economic lot size model," Management Science, Vol. 5, pp. 89–96, 1958
 ^ Wagelmans, Albert, Stan Van Hoesel, and Antoon Kolen. "Economic lot sizing: an O (n log n) algorithm that runs in linear time in the WagnerWhitin case." Operations Research 40.1Supplement  1 (1992): S145S156.
 ^ EA Silver, HC Meal, A heuristic for selecting lot size quantities for the case of a deterministic timevarying demand rate and discrete opportunities for replenishment, Production and inventory management, 1973
Further reading
 Lee, ChungYee, Sila Çetinkaya, and Albert PM Wagelmans. "A dynamic lotsizing model with demand time windows." Management Science 47.10 (2001): 13841395.
 Federgruen, Awi, and Michal Tzur. "A simple forward algorithm to solve general dynamic lot sizing models with n periods in 0 (n log n) or 0 (n) time." Management Science 37.8 (1991): 909925.
 Jans, Raf, and Zeger Degraeve. "Metaheuristics for dynamic lot sizing: a review and comparison of solution approaches." European Journal of Operational Research 177.3 (2007): 18551875.
 H.M. Wagner and T. Whitin, "Dynamic version of the economic lot size model," Management Science, Vol. 5, pp. 89–96, 1958
 H.M. Wagner: "Comments on Dynamic version of the economic lot size model", Management Science, Vol. 50 No. 12 Suppl., December 2004