In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P^{op} or P^{d}. This dual order P^{op} is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in P^{op} if and only if y ≤ x holds in P. It is easy to see that this construction, which can be depicted by flipping the Hasse diagram for P upside down, will indeed yield a partially ordered set. In a broader sense, two partially ordered sets are also said to be duals if they are dually isomorphic, i.e. if one poset is order isomorphic to the dual of the other.
The importance of this simple definition stems from the fact that every definition and theorem of order theory can readily be transferred to the dual order. Formally, this is captured by the Duality Principle for ordered sets:
 If a given statement is valid for all partially ordered sets, then its dual statement, obtained by inverting the direction of all order relations and by dualizing all order theoretic definitions involved, is also valid for all partially ordered sets.
If a statement or definition is equivalent to its dual then it is said to be selfdual. Note that the consideration of dual orders is so fundamental that it often occurs implicitly when writing ≥ for the dual order of ≤ without giving any prior definition of this "new" symbol.
YouTube Encyclopedic

1/3Views:4 715355 26080 856

PRINCIPLE OF DUALITY  LOGIC & SETS  DISCRETE MATHEMATICS  OU EDUCATION

Euler's Formula and Graph Duality

20. Option Price and Probability Duality
Transcription
Examples
Naturally, there are a great number of examples for concepts that are dual:
 Greatest elements and least elements
 Maximal elements and minimal elements
 Least upper bounds (suprema, ∨) and greatest lower bounds (infima, ∧)
 Upper sets and lower sets
 Ideals and filters
 Closure operators and kernel operators.
Examples of notions which are selfdual include:
 Being a (complete) lattice
 Monotonicity of functions
 Distributivity of lattices, i.e. the lattices for which ∀x,y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) holds are exactly those for which the dual statement ∀x,y,z: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) holds^{[1]}
 Being a Boolean algebra
 Being an order isomorphism.
Since partial orders are antisymmetric, the only ones that are selfdual are the equivalence relations.
See also
 Converse relation
 List of Boolean algebra topics
 Transpose graph
 Duality in category theory, of which duality in order theory is a special case
References
 ^ The quantifiers are essential: for individual elements x, y, z, e.g. the first equation may be violated, but the second may hold; see the N_{5} lattice for an example.
 Davey, B.A.; Priestley, H. A. (2002), Introduction to Lattices and Order (2nd ed.), Cambridge University Press, ISBN 9780521784511