To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Diverterless supersonic inlet

From Wikipedia, the free encyclopedia

J-10B with a diverterless air intake displayed at Airshow China 2018

A diverterless supersonic inlet (DSI) is a type of jet engine air intake used by some modern combat aircraft to control air flow into their engines. It consists of a "bump" and a forward-swept inlet cowl, which work together to divert boundary layer airflow away from the aircraft's engine. This eliminates the need for a splitter plate, while compressing the air to slow it down from supersonic to subsonic speeds. The DSI can be used to replace conventional methods of controlling supersonic and boundary-layer airflow.

DSIs can be used to replace the intake ramp and inlet cone, which are more complex, heavy and expensive.[1]

YouTube Encyclopedic

  • 1/5
    Views:
    16 474
    20 708
    27 863
    40 088
    3 792
  • AFRL presents The Tech Inside – Diverterless Inlet
  • The Vintage Intakes of the F-35 - The origin of DSI intakes.
  • How Does A Supersonic Jet Engine Inlet Work? - Advanced Compressible Flow
  • Divertless Supersonic Inlet (DSI) F-16. JF-17 Thunder has DSI but not F-16. Why?
  • GAS TURBINE ENGINE AIR INTAKE | DESIGN REQUIRMENTS FOR SUBSONIC AND SUPERSONIC INTAKES | MODULE 14

Transcription

Technical background

Testing of the F-35 diverterless supersonic inlet on a modified F-16. The original intake is shown in the top image.

The fundamental design of a gas turbine engine is such that the air flow-rate entering its compressor is regulated by the amount of fuel burned in its combustor. For supersonic flight the air entering the inlet also has to be regulated to a similar amount by the design of the entrance of the inlet duct. The optimum design of the duct will minimize drag on the one hand and unstable shock position (manifested by "buzz") on the other.

Inlets

On supersonic jets, the high kinetic energy in the approaching air has to be transformed into static pressure while losing a minimum amount of energy. To do this the inlets are more complicated than subsonic ones as they have to set up two or three shock waves to compress the air. A cone or inclined ramp protrudes ahead of the inlet. The complexity of these inlets increases with increase in design speed.

Diverterless inlets

The DSI bump functions as a compression surface and creates a pressure distribution that prevents the majority of the boundary layer air from entering the inlet at speeds up to Mach 2. In essence, the DSI does away with complex and heavy mechanical systems.

History

Initial research into the DSI was done by Antonio Ferri in the 1950s, and further developed & optimized by Lockheed Martin in the early 1990s using computational fluid dynamics. The first Lockheed DSI was flown on 11 December 1996 as part of a Technology Demonstration project. It was installed on an F-16 Block 30 fighter, replacing the aircraft's original intake diverter. The modified F-16 demonstrated a maximum speed of Mach 2.0 (Mach 2.0 is the F-16's clean certified maximum speed) and handling characteristics similar to a normal F-16. It was also shown that subsonic specific excess power was slightly improved.

The DSI concept was introduced into the JAST/JSF program as a trade study item in mid-1994. It was compared with a traditional "caret" style inlet. The trade studies involved additional CFD, testing, and weight and cost analyses.

A DSI was incorporated into the design of the Lockheed Martin F-35 Lightning II in 2000 after proving to be 30% lighter and showing lower production and maintenance costs over traditional inlets while still meeting all performance requirements.[1]

Benefits

Weight and complexity reduction

Traditional aircraft inlets contain many heavy moving parts. In comparison, DSI eliminates all moving parts, which makes it far less complex and more reliable than earlier diverter-plate inlets. The removal of moving parts also reduces the weight of the aircraft.[2]

Stealth

DSIs improve the aircraft's very-low-observable characteristics by eliminating radar reflections between the diverter and the aircraft's skin.[1] Additionally, the "bump" surface reduces the engine's exposure to radar, significantly reducing a strong source of radar reflection[3] because they provide an additional shielding of engine fans against radar waves.

Analysts have noted that the DSI reduces the need for application of radar-absorbent materials in reducing frontal radar cross section of the aircraft.[1][4]

List of aircraft with DSI

Active

Future

See also

References

  1. ^ a b c d Hehs, Eric (15 July 2000). "JSF Diverterless Supersonic Inlet". Code One magazine. Lockheed Martin. Retrieved 11 February 2011.
  2. ^ "F-35 JSF Technology". Archived from the original on 2012-05-06. Retrieved 2015-06-04.
  3. ^ ""Fast History: Lockheed's Diverterless Supersonic Inlet Testbed F-16"". Archived from the original on 2013-09-07. Retrieved 2023-08-07.
  4. ^ "J-20's Stealth Signature Poses Interesting Unknowns" Archived 2013-05-15 at the Wayback Machine. Aviation Week. Retrieved 13 January 2013
  5. ^ "歼-10B改进型". AirForceWorld.com. Archived from the original on 2013-08-05. Retrieved 2013-08-01.
  6. ^ "JL-9 Trainer Jet gets DSI inlet, Guizhou China". AirForceWorld.com. Archived from the original on 5 August 2013. Retrieved 29 Aug 2011.
  7. ^ "Paris Air Show 2011 - Naval air trainer unveiled by Chinese media". home.janes.com, 15 February 2012.
  8. ^ "AMCA could fly undetected during dangerous missions". Onmanorama. February 5, 2020. Retrieved 2020-02-06.

External links

This page was last edited on 10 April 2024, at 17:21
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.