To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Dimensional reduction

From Wikipedia, the free encyclopedia

Dimensional reduction is the limit of a compactified theory where the size of the compact dimension goes to zero. In physics, a theory in D spacetime dimensions can be redefined in a lower number of dimensions d, by taking all the fields to be independent of the location in the extra D − d dimensions.

For example, consider a periodic compact dimension with period L. Let x be the coordinate along this dimension. Any field can be described as a sum of the following terms:

with An a constant. According to quantum mechanics, such a term has momentum nh/L along x, where h is Planck's constant.[1] Therefore, as L goes to zero, the momentum goes to infinity, and so does the energy, unless n = 0. However n = 0 gives a field which is constant with respect to x. So at this limit, and at finite energy, will not depend on x.

This argument generalizes. The compact dimension imposes specific boundary conditions on all fields, for example periodic boundary conditions in the case of a periodic dimension, and typically Neumann or Dirichlet boundary conditions in other cases. Now suppose the size of the compact dimension is L; then the possible eigenvalues under gradient along this dimension are integer or half-integer multiples of 1/L (depending on the precise boundary conditions). In quantum mechanics this eigenvalue is the momentum of the field, and is therefore related to its energy. As L → 0 all eigenvalues except zero go to infinity, and so does the energy. Therefore, at this limit, with finite energy, zero is the only possible eigenvalue under gradient along the compact dimension, meaning that nothing depends on this dimension.

Dimensional reduction also refers to a specific cancellation of divergences in Feynman diagrams. It was put forward by Amnon Aharony, Yoseph Imry, and Shang-keng Ma who proved in 1976 that "to all orders in perturbation expansion, the critical exponents in a d-dimensional (4 < d < 6) system with short-range exchange and a random quenched field are the same as those of a (d–2)-dimensional pure system."[2] Their arguments indicated that the "Feynman diagrams which give the leading singular behavior for the random case are identically equal, apart from combinatorial factors, to the corresponding Feynman diagrams for the pure case in two fewer dimensions."[3] This dimensional reduction was investigated further in the context of supersymmetric theory of Langevin stochastic differential equations by Giorgio Parisi and Nicolas Sourlas [4] who "observed that the most infrared divergent diagrams are those with the maximum number of random source insertions, and, if the other diagrams are neglected, one is left with a diagrammatic expansion for a classical field theory in the presence of random sources... Parisi and Sourlas explained this dimensional reduction by a hidden supersymmetry."[3]

YouTube Encyclopedic

  • 1/3
    Views:
    52 745
    665
    867
  • Dimensionality Reduction - The Math of Intelligence #5
  • CITA 672: Dimensional reduction in the sky?
  • Fast, Deterministic, and Sparse Dimensionality Reduction

Transcription

See also

References

  1. ^ Strictly speaking, is a linear combination of two wavefunctions with momentum .
  2. ^ Aharony, A.; Imry, Y.; Ma, S.K. (1976). "Lowering of dimensionality in phase transitions with random fields". Physical Review Letters. 37 (20): 1364–1367. Bibcode:1976PhRvL..37.1364A. doi:10.1103/PhysRevLett.37.1364.
  3. ^ a b Klein, A.; Landau, L.J.; Perez, J.F. (1984). "Supersymmetry and the Parisi-Sourlas dimensional reduction: a rigorous proof". Communications in Mathematical Physics. 94 (4): 459–482. Bibcode:1984CMaPh..94..459K. doi:10.1007/BF01403882. S2CID 120640917.
  4. ^ Parisi, G.; Sourlas, N. (1979). "Random Magnetic Fields, Supersymmetry, and Negative Dimensions". Physical Review Letters. 43 (11): 744–745. Bibcode:1979PhRvL..43..744P. doi:10.1103/PhysRevLett.43.744.
This page was last edited on 21 September 2023, at 21:41
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.