To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Difference density map

From Wikipedia, the free encyclopedia

In X-ray crystallography, a difference density map or Fo–Fc map shows the spatial distribution of the difference between the measured electron density of the crystal and the electron density explained by the current model.[1]

A way to compute this map has been formulated for cyro-EM.[2]

YouTube Encyclopedic

  • 1/3
    Views:
    4 754
    1 571
    115 180
  • First view at Electron Density Maps
  • Population distribution and density | Geography Class 12
  • Population Distribution & Density

Transcription

Display

Conventionally, they are displayed as isosurfaces with positive density—electron density where there's nothing in the model, usually corresponding to some constituent of the crystal that hasn't been modelled, for example a ligand or a crystallisation adjutant -- in green, and negative density—parts of the model not backed up by electron density, indicating either that an atom has been disordered by radiation damage or that it is modelled in the wrong place—in red. The typical contouring (display threshold) is set at 3σ.[3]

Calculation

Difference density maps are usually calculated using Fourier coefficients which are the differences between the observed structure factor amplitudes from the X-ray diffraction experiment and the calculated structure factor amplitudes from the current model, using the phase from the model for both terms (since no phases are available for the observed data). The two sets of structure factors must be on the same scale.

It is now normal to also include maximum-likelihood weighting terms which take into account the estimated errors in the current model:

where m is a figure of merit which is an estimate of the cosine of the error in the phase, and D is a "σA" scale factor. These coefficients are derived from the gradient of the likelihood function of the observed structure factors on the basis of the current model. A difference map built with m and D is known as a mFo – DFc map.[3]

The use of ML weighting reduces model bias (due to using the model's phase) in the 2 Fo–Fc map, which is the main estimate of the true density. However, it does not fully eliminate such bias.[4]

References

  1. ^ Bank, RCSB Protein Data. "RCSB PDB: X-ray Electron Density Maps". www.rcsb.org. Retrieved 2021-01-08.
  2. ^ Yamashita, Keitaro; Palmer, Colin M.; Burnley, Tom; Murshudov, Garib N. (1 October 2021). "Cryo-EM single-particle structure refinement and map calculation using Servalcat". Acta Crystallographica Section D Structural Biology. 77 (10): 1282–1291. Bibcode:2021AcCrD..77.1282Y. doi:10.1107/S2059798321009475. PMC 8489229. PMID 34605431.
  3. ^ a b Lamb, AL; Kappock, TJ; Silvaggi, NR (April 2015). "You are lost without a map: Navigating the sea of protein structures". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1854 (4): 258–68. doi:10.1016/j.bbapap.2014.12.021. PMC 5051661. PMID 25554228.
  4. ^ Terwilliger, TC; Grosse-Kunstleve, RW; Afonine, PV; Moriarty, NW; Adams, PD; Read, RJ; Zwart, PH; Hung, LW (May 2008). "Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias". Acta Crystallographica. Section D, Biological Crystallography. 64 (Pt 5): 515–24. Bibcode:2008AcCrD..64..515T. doi:10.1107/S0907444908004319. PMC 2424225. PMID 18453687.

Further reading

This page was last edited on 8 December 2023, at 15:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.