To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

2,6-Diaminopurine

From Wikipedia, the free encyclopedia

2,6-Diaminopurine
Names
IUPAC name
7H-purine-2,6-diamine
Other names
2-aminoadenine; 2,6-DAP
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.016.006 Edit this at Wikidata
UNII
  • InChI=1S/C5H6N6/c6-3-2-4(9-1-8-2)11-5(7)10-3/h1H,(H5,6,7,8,9,10,11) checkY=
    Key: MSSXOMSJDRHRMC-UHFFFAOYSA-N checkY=
  • InChI=1S/C5H6N6/c6-3-2-4(9-1-8-2)11-5(7)10-3/h1H,(H5,6,7,8,9,10,11)
  • c1[nH]c2c(nc(nc2n1)N)N
Properties
C5H6N6
Molar mass 150.145 g·mol−1
Appearance White to yellow crystalline powder
Density 1.743 g/cm3
Melting point 117 to 122 °C (243 to 252 °F; 390 to 395 K)
2.38 g/L at 20 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

2,6-diaminopurine (2,6-DAP, also known as 2-aminoadenine) is a compound once used in the treatment of leukemia.[1] As the Z base, it is found instead of adenine (A) in the genetic material of some bacteriophage viruses.[2]

In August 2011, a report, based on NASA studies with meteorites found on Earth, was published suggesting 2,6-diaminopurine and related organic molecules, including the DNA and RNA components adenine and guanine, may have been formed extraterrestrially in outer space.[3][4][5]

YouTube Encyclopedic

  • 1/1
    Views:
    44 426
  • Jack Szostak (Harvard/HHMI) Part 3: Non-enzymatic Copying of Nucleic Acid Templates

Transcription

In viruses

DiampurineT DNA base pair

In cyanophage S-2L (Siphoviridae), diaminopurine is used instead of adenine (host evasion).[6] Diaminopurine base (Z) pairs perfectly with thymine (T) as it is identical to adenine (A) but has an amine group at position 2 forming 3 intermolecular hydrogen bonds, eliminating the major difference between the two types of basepairs (weak:A-T and strong:C-G). This improved stability affects protein-binding interactions that rely on those differences.

Four papers published April 2021 further describes the use and production of the Z-base. It is now known that:[7]

  • The S-2L phage avoids incorporating A bases in the genome by hydrolyzing dATP (DatZ enzyme);[8]
  • The Z base is produced by a pathway involving DUF550 (MazZ) and PurZ in S-2L and Vibrio phage PhiVC8;[9]
  • The PrimPol/AEP DNA polymerase responsible for handling the Z base occurs in the same gene cluster as the three aforementioned enzymes;[10]
  • The Z base is quite widespread in both Siphoviridae and Podoviridae, based on the occurrence of the said gene cluster.[11]

In August 2021, it was shown that DatZ, MazZ and PurZ are sufficient to replace some occurrence of A by Z in the bacterial genome of E. coli; expression of this system is toxic to the cell. The structures of MazZ (subtype 2) and PurZ are also determined, showing a possible link between PurZ and archaeal versions of PurA.[12]

Biosynthesis

2-aminoadenine is produced in two steps. The enzyme MazZ (homologous to MazG, EC 3.6.1.8) first performs:[12]

dGTP + H2O = dGMP + diphosphate

The enzyme PurZ (homologous to PurA, EC 6.3.4.4) then performs:[9]

(d)ATP + dGMP + L-aspartate = (d)ADP + phosphate + 2-aminodeoxyadenylosuccinate (dSMP)

The resulting dSMP is processed by host enzymes analogously to adenylosuccinate to produce dZTP.

In cellular life

2,6-DAP was used to treat leukemia since as early as 1951.[13] It is known to arrest progression of cell cycle in mouse leukemia cells by 1989.[14] Cancer cells are known to become resistant to DAP by losing their adenine phosphoribosyltransferase (APRT) function,[15] a process shared with E. coli.[16]

DAP derivatives are in vitro antivirals useful against pseudorabies virus, a economically important livestock disease.[17] This base, in its free form, is able to correct UGA nonsense mutations by encouraging translational readthrough, through the inhibition of FTSJ1.[18]

Bioengineering

In bioengineering, anti-miRNA oligonucleotides (specifically, the serinol nucleic acid [SNA] type) incorporating base Z instead of A show enhanced binding to RNA.[19]

DAP is used similar to other nuclear acid analogues in the investigation of enzyme structures and mechanisms.[20]

References

  1. ^ "George H. Hitchings". nobelprize.org.
  2. ^ "Some viruses thwart bacterial defenses with a unique genetic alphabet". 5 May 2021.
  3. ^ Callahan, M.P.; Smith, K.E.; Cleaves, H.J.; Ruzica, J.; Stern, J.C.; Glavin, D.P.; House, C.H.; Dworkin, J.P. (11 August 2011). "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases". Proceedings of the National Academy of Sciences. 108 (34). PNAS: 13995–13998. Bibcode:2011PNAS..10813995C. doi:10.1073/pnas.1106493108. PMC 3161613. PMID 21836052.
  4. ^ Steigerwald, John (8 August 2011). "NASA Researchers: DNA Building Blocks Can Be Made in Space". NASA. Retrieved 2011-08-10.
  5. ^ ScienceDaily Staff (9 August 2011). "DNA Building Blocks Can Be Made in Space, NASA Evidence Suggests". ScienceDaily. Retrieved 2011-08-09.
  6. ^ Kirnos MD, Khudyakov IY, Alexandrushkina NI, Vanyushin BF. 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature. 1977 Nov 24;270(5635):369–70.
  7. ^ Jacinta Bowler: Some Viruses Have a Completely Different Genome to The Rest of Life on Earth, on: sciencealert, 4 MAY 2021
  8. ^ Czernecki, Dariusz; Legrand, Pierre; Tekpinar, Mustafa; Rosario, Sandrine; Kaminski, Pierre-Alexandre; Delarue, Marc (2021-04-23). "How cyanophage S-2L rejects adenine and incorporates 2-aminoadenine to saturate hydrogen bonding in its DNA". Nature Communications. 12 (1): 2420. Bibcode:2021NatCo..12.2420C. doi:10.1038/s41467-021-22626-x. ISSN 2041-1723. PMC 8065100. PMID 33893297.
  9. ^ a b Sleiman, Dona; Garcia, Pierre Simon; Lagune, Marion; Loc’h, Jerome; Haouz, Ahmed; Taib, Najwa; Röthlisberger, Pascal; Gribaldo, Simonetta; Marlière, Philippe; Kaminski, Pierre Alexandre (30 April 2021). "A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes". Science. 372 (6541): 516–520. Bibcode:2021Sci...372..516S. doi:10.1126/science.abe6494. PMID 33926955. S2CID 233448787.
  10. ^ Pezo, Valerie; Jaziri, Faten; Bourguignon, Pierre-Yves; Louis, Dominique; Jacobs-Sera, Deborah; Rozenski, Jef; Pochet, Sylvie; Herdewijn, Piet; Hatfull, Graham F.; Kaminski, Pierre-Alexandre; Marliere, Philippe (30 April 2021). "Noncanonical DNA polymerization by aminoadenine-based siphoviruses". Science. 372 (6541): 520–524. Bibcode:2021Sci...372..520P. doi:10.1126/science.abe6542. PMID 33926956. S2CID 233448788.
  11. ^ Zhou, Yan; Su, Xuexia; Wei, Yifeng; Cheng, Yu; Guo, Yu; Khudyakov, Ivan; Liu, Fuli; He, Ping; Song, Zhangyue; Li, Zhi; Gao, Yan; Ang, Ee Lui; Zhao, Huimin; Zhang, Yan; Zhao, Suwen (30 April 2021). "A widespread pathway for substitution of adenine by diaminopurine in phage genomes". Science. 372 (6541): 512–516. Bibcode:2021Sci...372..512Z. doi:10.1126/science.abe4882. PMID 33926954. S2CID 233448821.
  12. ^ a b Czernecki, Dariusz; Bonhomme, Frédéric; Kaminski, Pierre-Alexandre; Delarue, Marc (2021-08-05). "Characterization of a triad of genes in cyanophage S-2L sufficient to replace adenine by 2-aminoadenine in bacterial DNA". Nature Communications. 12 (1): 4710. Bibcode:2021NatCo..12.4710C. doi:10.1038/s41467-021-25064-x. ISSN 2041-1723. PMC 8342488. PMID 34354070.
  13. ^ BURCHENAL, JH; KARNOFSKY, DA; KINGSLEY-PILLERS, EM; SOUTHAM, CM; MYERS, WP; ESCHER, GC; CRAVER, LF; DARGEON, HW; RHOADS, CP (May 1951). "The effects of the folic acid antagonists and 2,6-diaminopurine on neoplastic disease, with special reference to acute leukemia". Cancer. 4 (3): 549–69. doi:10.1002/1097-0142(195105)4:3<549::aid-cncr2820040308>3.0.co;2-j. PMID 14839611. S2CID 31262125.
  14. ^ Weckbecker, G; Cory, JG (1989). "Metabolic activation of 2,6-diaminopurine and 2,6-diaminopurine-2'-deoxyriboside to antitumor agents". Advances in Enzyme Regulation. 28: 125–44. doi:10.1016/0065-2571(89)90068-x. PMID 2624171.
  15. ^ Shao, C; Deng, L; Henegariu, O; Liang, L; Stambrook, PJ; Tischfield, JA (20 June 2000). "Chromosome instability contributes to loss of heterozygosity in mice lacking p53". Proceedings of the National Academy of Sciences of the United States of America. 97 (13): 7405–10. Bibcode:2000PNAS...97.7405S. doi:10.1073/pnas.97.13.7405. PMC 16558. PMID 10861008.
  16. ^ Kocharian, ShM; Chukanova, TI; Sukhodolets, VV (1977). "[Mutations of resistance to 2,6-diaminopurine and 6-methylpurine that affect adenine phosphoribosyltransferase in Escherichia coli K-12]". Genetika. 13 (10): 1821–30. PMID 348574.
  17. ^ Zouharova, D; Lipenska, I; Fojtikova, M; Kulich, P; Neca, J; Slany, M; Kovarcik, K; Turanek-Knotigova, P; Hubatka, F; Celechovska, H; Masek, J; Koudelka, S; Prochazka, L; Eyer, L; Plockova, J; Bartheldyova, E; Miller, AD; Ruzek, D; Raska, M; Janeba, Z; Turanek, J (29 February 2016). "Antiviral activities of 2,6-diaminopurine-based acyclic nucleoside phosphonates against herpesviruses: In vitro study results with pseudorabies virus (PrV, SuHV-1)". Veterinary Microbiology. 184: 84–93. doi:10.1016/j.vetmic.2016.01.010. PMID 26854349.
  18. ^ Trzaska, C; Amand, S; Bailly, C; Leroy, C; Marchand, V; Duvernois-Berthet, E; Saliou, JM; Benhabiles, H; Werkmeister, E; Chassat, T; Guilbert, R; Hannebique, D; Mouray, A; Copin, MC; Moreau, PA; Adriaenssens, E; Kulozik, A; Westhof, E; Tulasne, D; Motorin, Y; Rebuffat, S; Lejeune, F (20 March 2020). "2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations". Nature Communications. 11 (1): 1509. Bibcode:2020NatCo..11.1509T. doi:10.1038/s41467-020-15140-z. PMC 7083880. PMID 32198346.
  19. ^ Kamiya, Y; Donoshita, Y; Kamimoto, H; Murayama, K; Ariyoshi, J; Asanuma, H (5 October 2017). "Introduction of 2,6-Diaminopurines into Serinol Nucleic Acid Improves Anti-miRNA Performance". ChemBioChem. 18 (19): 1917–1922. doi:10.1002/cbic.201700272. PMID 28748559. S2CID 35619213.
  20. ^ Bailly, C (1 October 1998). "The use of diaminopurine to investigate structural properties of nucleic acids and molecular recognition between ligands and DNA". Nucleic Acids Research. 26 (19): 4309–4314. doi:10.1093/nar/26.19.4309. PMC 147870. PMID 9742229.
This page was last edited on 23 August 2023, at 21:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.