To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Devapamil
Names
IUPAC name
(RS)-2-(3,4-dimethoxyphenyl)-2-isopropyl-5-[2-(3-methoxyphenyl)ethyl-methylamino]pentanenitrile
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
UNII
  • InChI=1/C26H36N2O3/c1-20(2)26(19-27,22-11-12-24(30-5)25(18-22)31-6)14-8-15-28(3)16-13-21-9-7-10-23(17-21)29-4/h7,9-12,17-18,20H,8,13-16H2,1-6H3
    Key: VMVKIDPOEOLUFS-UHFFFAOYAV
  • N#CC(c1cc(OC)c(OC)cc1)(CCCN(CCc2cccc(OC)c2)C)C(C)C
Properties
C26H36N2O3
Molar mass 424.57564
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Devapamil is a calcium channel blocker. It is also known as desmethoxyverapamil, which is a phenylalkylamine (PAA) derivative.[1] Devapamil not only inhibits by blocking the calcium gated channels, but also by depolarizing the membrane during the sodium-potassium exchanges.[2]

Structure

Devapamil consists of two aromatic rings with methoxy substituents connected by an alkylamine chain increasing flexibility and overall potency.[3]

Animal studies

Devapamil in rats can be used to decrease glutathione levels and increase oxidation of lipids, which makes it effective in preclusion of ulcers caused by stress.[4][5] The medical characteristics of this drug, and other phenylalkylamines, depends greatly on the state of the calcium channels being targeted which results in a greater affinity and drug efficiency. [6]

References

  1. ^ Erdmann R, Lüttgau HC (June 1989). "The effect of the phenylalkylamine D888 (devapamil) on force and Ca2+ current in isolated frog skeletal muscle fibres". The Journal of Physiology. 413 (1): 521–41. doi:10.1113/jphysiol.1989.sp017667. PMC 1189114. PMID 2557440.
  2. ^ Dierkes PW, Wende V, Hochstrate P, Schlue WR (July 2004). "L-type Ca2+ channel antagonists block voltage-dependent Ca2+ channels in identified leech neurons". Brain Research. 1013 (2): 159–67. doi:10.1016/j.brainres.2004.03.038. PMID 15193524. S2CID 22004238.
  3. ^ Cheng RC, Tikhonov DB, Zhorov BS (October 2009). "Structural model for phenylalkylamine binding to L-type calcium channels". The Journal of Biological Chemistry. 284 (41): 28332–42. doi:10.1074/jbc.M109.027326. PMC 2788883. PMID 19700404.
  4. ^ Alican I, Toker F, Arbak S, Yegen BC, Yalçin AS, Oktay S (August 1994). "Gastric lipid peroxidation, glutathione and calcium channel blockers in the stress-induced ulcer model in rats". Pharmacological Research. 30 (2): 123–35. doi:10.1016/1043-6618(94)80004-9. PMID 7816741.
  5. ^ Hung CR (May 2004). "Protective effects of lysozyme chloride and reduced glutathione on betel quid chewing-produced gastric oxidative stress and haemorrhagic ulcer in rats". Inflammopharmacology. 12 (2): 115–29. doi:10.1163/1568560041352284. PMID 15265315. S2CID 860321.
  6. ^ Cheng RC, Tikhonov DB, Zhorov BS (October 2009). "Structural model for phenylalkylamine binding to L-type calcium channels". The Journal of Biological Chemistry. 284 (41): 28332–42. doi:10.1074/jbc.M109.027326. PMC 2788883. PMID 19700404.
This page was last edited on 3 October 2021, at 20:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.