To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Descent (mathematics)

From Wikipedia, the free encyclopedia

In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification.

YouTube Encyclopedic

  • 1/3
    Views:
    212 865
    314 371
    1 120 148
  • Hilbert's Curve: Is infinite math useful?
  • Science YouTubers attempting a graph theory puzzle
  • Thinking visually about higher dimensions

Transcription

Descent of vector bundles

The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start.

Suppose X is a topological space covered by open sets Xi. Let Y be the disjoint union of the Xi, so that there is a natural mapping

We think of Y as 'above' X, with the Xi projection 'down' onto X. With this language, descent implies a vector bundle on Y (so, a bundle given on each Xi), and our concern is to 'glue' those bundles Vi, to make a single bundle V on X. What we mean is that V should, when restricted to Xi, give back Vi, up to a bundle isomorphism.

The data needed is then this: on each overlap

intersection of Xi and Xj, we'll require mappings

to use to identify Vi and Vj there, fiber by fiber. Further the fij must satisfy conditions based on the reflexive, symmetric and transitive properties of an equivalence relation (gluing conditions). For example, the composition

for transitivity (and choosing apt notation). The fii should be identity maps and hence symmetry becomes (so that it is fiberwise an isomorphism).

These are indeed standard conditions in fiber bundle theory (see transition map). One important application to note is change of fiber: if the fij are all you need to make a bundle, then there are many ways to make an associated bundle. That is, we can take essentially same fij, acting on various fibers.

Another major point is the relation with the chain rule: the discussion of the way there of constructing tensor fields can be summed up as 'once you learn to descend the tangent bundle, for which transitivity is the Jacobian chain rule, the rest is just 'naturality of tensor constructions'.

To move closer towards the abstract theory we need to interpret the disjoint union of the

now as

the fiber product (here an equalizer) of two copies of the projection p. The bundles on the Xij that we must control are V′ and V", the pullbacks to the fiber of V via the two different projection maps to X.

Therefore, by going to a more abstract level one can eliminate the combinatorial side (that is, leave out the indices) and get something that makes sense for p not of the special form of covering with which we began. This then allows a category theory approach: what remains to do is to re-express the gluing conditions.

History

The ideas were developed in the period 1955–1965 (which was roughly the time at which the requirements of algebraic topology were met but those of algebraic geometry were not). From the point of view of abstract category theory the work of comonads of Beck was a summation of those ideas; see Beck's monadicity theorem.

The difficulties of algebraic geometry with passage to the quotient are acute. The urgency (to put it that way) of the problem for the geometers accounts for the title of the 1959 Grothendieck seminar TDTE on theorems of descent and techniques of existence (see FGA) connecting the descent question with the representable functor question in algebraic geometry in general, and the moduli problem in particular.

Fully faithful descent

Let . Each sheaf F on X gives rise to a descent data:

where satisfies the cocycle condition:[1]

.

The fully faithful descent says: is fully faithful. The descent theory tells conditions for which there is a fully faithful descent.

See also

References

  1. ^ Descent data for quasi-coherent sheaves, Stacks Project
  • SGA 1, Ch VIII – this is the main reference
  • Siegfried Bosch; Werner Lütkebohmert; Michel Raynaud (1990). Néron Models. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. Vol. 21. Springer-Verlag. ISBN 3540505873. A chapter on the descent theory is more accessible than SGA.
  • Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.

Further reading

Other possible sources include:

External links

This page was last edited on 29 May 2024, at 09:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.