To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time. 4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds Delaporte distribution

Parameters Probability mass function When $\alpha$ and $\beta$ are 0, the distribution is the Poisson.When $\lambda$ is 0, the distribution is the negative binomial. Cumulative distribution function When $\alpha$ and $\beta$ are 0, the distribution is the Poisson.When $\lambda$ is 0, the distribution is the negative binomial. $\lambda >0$ (fixed mean) $\alpha ,\beta >0$ (parameters of variable mean) $k\in \{0,1,2,\ldots \}$ $\sum _{i=0}^{k}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{k-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(k-i)!}}$ $\sum _{j=0}^{k}\sum _{i=0}^{j}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{j-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(j-i)!}}$ $\lambda +\alpha \beta$ ${\begin{cases}z,z+1&\{z\in \mathbb {Z} \}:\;z=(\alpha -1)\beta +\lambda \\\lfloor z\rfloor &{\textrm {otherwise}}\end{cases}}$ $\lambda +\alpha \beta (1+\beta )$ See #Properties See #Properties ${\frac {e^{\lambda (e^{t}-1)}}{(1-\beta (e^{t}-1))^{\alpha }}}$ The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science. It can be defined using the convolution of a negative binomial distribution with a Poisson distribution. Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the $\lambda$ parameter, and a gamma-distributed variable component, which has the $\alpha$ and $\beta$ parameters. The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959, although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders, where it was called the Formel II distribution.

Properties

The skewness of the Delaporte distribution is:

${\frac {\lambda +\alpha \beta (1+3\beta +2\beta ^{2})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{\frac {3}{2}}}}$ The excess kurtosis of the distribution is:

${\frac {\lambda +3\lambda ^{2}+\alpha \beta (1+6\lambda +6\lambda \beta +7\beta +12\beta ^{2}+6\beta ^{3}+3\alpha \beta +6\alpha \beta ^{2}+3\alpha \beta ^{3})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{2}}}$ Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.